Space-time symmetries and the Yang-Mills gradient flow

被引:45
|
作者
Deldebbio, L [1 ]
Patella, A [2 ,3 ]
Rago, A [4 ]
机构
[1] Univ Edinburgh, Higgs Ctr Theoret Phys, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] CERN, PH TH, CH-1211 Geneva 23, Switzerland
[3] Plymouth Univ, Sch Comp & Math, Plymouth PL4 8AA, Devon, England
[4] Plymouth Univ, Ctr Math Sci, Plymouth PL4 8AA, Devon, England
来源
关键词
Lattice Gauge Field Theories; Space-Time Symmetries; Renormalization Group; ENERGY-MOMENTUM-TENSOR; FIELD-THEORY; GAUGE-THEORIES; LATTICE; TRACE;
D O I
10.1007/JHEP11(2013)212
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The recent introduction of the gradient flow has provided a new tool to probe the dynamics of quantum field theories. The latest developments have shown how to use the gradient flow for the exploration of symmetries, and the definition of the corresponding renormalized Noether currents. In this paper we introduce infinitesimal translations along the gradient flow for gauge theories, and study the corresponding Ward identities. This approach is readily generalized to the case of gauge theories defined on a lattice, where the regulator breaks translation invariance. The Ward identities in this case lead to a nonperturbative renormalization of the energy-momentum tensor. We discuss an application of this method to the study of dilatations and scale invariance on the lattice.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Space-time symmetries and the Yang-Mills gradient flow
    L. Del Debbio
    A. Patella
    A. Rago
    Journal of High Energy Physics, 2013
  • [2] INTERNAL GEOMETRICAL STRUCTURES ON MINKOWSKI SPACE-TIME AND YANG-MILLS SYMMETRIES
    CAMENZIND, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 10 (03) : 197 - 216
  • [3] Gauging Yang-Mills symmetries in (1+1)-dimensional space-time
    Almukahhal, RQ
    Hübsch, T
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (29): : 4713 - 4768
  • [4] SPACE-TIME WORMHOLES WITH YANG-MILLS FIELDS
    REY, SJ
    NUCLEAR PHYSICS B, 1990, 336 (01) : 146 - 156
  • [5] Yang-Mills-Vlasov system with Yang-Mills charge density on a space-time curve
    Noutchegueme, N
    Noundjeu, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (09): : 779 - 782
  • [6] SPACE-TIME TOPOLOGY AND A NEW CLASS OF YANG-MILLS INSTANTON
    CHARAP, JM
    DUFF, MJ
    PHYSICS LETTERS B, 1977, 71 (01) : 219 - 221
  • [7] Reformulations of Yang-Mills theories with space-time tensor fields
    Guo, Zhi-Qiang
    ANNALS OF PHYSICS, 2016, 364 : 283 - 316
  • [8] Symmetries of self-dual Yang-Mills equations dimensionally reduced from (2, 2) space-time
    Paul Mansfield
    Adam Wardlow
    Journal of High Energy Physics, 2011
  • [9] Step scaling and the Yang-Mills gradient flow
    Luescher, Martin
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [10] The Yang-Mills gradient flow in finite volume
    Zoltan Fodor
    Kieran Holland
    Julius Kuti
    Daniel Nogradi
    Chik Him Wong
    Journal of High Energy Physics, 2012