Kernel Codebooks for Scene Categorization

被引:0
|
作者
van Gemert, Jan C. [1 ]
Geusebroek, Jan-Mark [1 ]
Veenman, Cor J. [1 ]
Smeulders, Arnold W. M. [1 ]
机构
[1] Univ Amsterdam, ISLA, NL-1098 SJ Amsterdam, Netherlands
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a method for scene categorization by modeling ambiguity in the popular codebook approach. The codebook approach describes an image as a bag of discrete visual codewords, where the frequency distributions of these words are used for image categorization. There are two drawbacks to the traditional codebook model: codeword uncertainty and codeword plausibility. Both of these drawbacks stem from the hard assignment of visual features to a single codeword. We show that allowing a degree of ambiguity in assigning codewords improves categorization performance for three state-of-the-art datasets.
引用
收藏
页码:696 / 709
页数:14
相关论文
共 50 条
  • [1] Feature Selection based Codebooks Construction for Scene Categorization
    Xie, Wenjie
    Xu, De
    Feng, Songhe
    Tang, Yingjun
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 948 - 951
  • [2] Mutual Information Based Codebooks Construction for Natural Scene Categorization
    Xie Wenjie
    Xu De
    Tang Yingjun
    Liu Shuoyan
    Feng Songhe
    CHINESE JOURNAL OF ELECTRONICS, 2011, 20 (03): : 419 - 424
  • [3] Freak Descriptor With Spatial Pyramid Kernel For Scene Categorization
    Yao, Qiong
    Xu, Xiang
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONIC, INDUSTRIAL AND CONTROL ENGINEERING, 2015, 8 : 126 - 129
  • [4] Scene Categorization Using Deeply Learned Gaze Shifting Kernel
    Sun, Xiao
    Zhang, Luming
    Wang, Zepeng
    Chang, Jie
    Yao, Yiyang
    Li, Ping
    Zimmermann, Roger
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (06) : 2156 - 2167
  • [5] Comparing compact codebooks for visual categorization
    van Gemert, Jan C.
    Snoek, Cees G. M.
    Veenman, Cor J.
    Smeulders, Arnold W. M.
    Geusebroek, Jan-Mark
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2010, 114 (04) : 450 - 462
  • [6] Gaze Shifting Kernel: Engineering Perceptually-Aware Features for Scene Categorization
    Zhang, Luming
    Hong, Richang
    Wang, Meng
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2015, PT I, 2015, 9314 : 254 - 264
  • [7] Estimation of Cyclostationary Codebooks for Kernel Adaptive Filtering
    Garcia-Vega, S.
    Alvarez-Meza, A. M.
    Castellanos-Dominguez, German
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 351 - 358
  • [8] Spatial Frequency Tuning for Scene Categorization: The Role of Scene Type and Categorization Level
    Wiesmann, Sandro
    Willenbockel, Verena
    Gosselin, Frederic
    Vo, Melissa L. -H.
    PERCEPTION, 2019, 48 : 136 - 137
  • [9] Statistics of natural scene structures and scene categorization
    Xin Chen
    Weibing Wan
    Zhiyong Yong
    BMC Neuroscience, 13 (Suppl 1)
  • [10] Scene Categorization with Spectral Features
    Khan, Salman H.
    Hayat, Munawar
    Porikli, Fatih
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5639 - 5649