Fast ultrasound-assisted synthesis of Li2MnSiO4 nanoparticles for a lithium-ion battery

被引:17
|
作者
Hwang, Chahwan [1 ]
Kim, Taejin [2 ]
Shim, Joongpyo [3 ]
Kwak, Kyungwon [1 ]
Ok, Kang Min [1 ]
Lee, Kyung-Koo [2 ]
机构
[1] Chung Ang Univ, Dept Chem, Seoul 156756, South Korea
[2] Kunsan Natl Univ, Dept Chem, Gunsan 573701, Jeonbuk, South Korea
[3] Kunsan Natl Univ, Dept Nano & Chem Engn, Gunsan 573701, Jeonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium-ion battery; Cathode active material; Lithium manganese silicate; Sonochemical reaction; Sol-gel process; CARBON-COATED LI2MNSIO4; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIAL; PARTICLE-SIZE; SOLVOTHERMAL SYNTHESIS; TIO2; NANOPARTICLES; COLLAPSING BUBBLE; NANOCOMPOSITE; LIFEPO4; STORAGE;
D O I
10.1016/j.jpowsour.2015.06.107
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-capacity Li2MnSiO4/C (LMS/C MBS) nanoparticles have been prepared using sonochemistry under a multibubble sonoluminescence (MBS) condition, and their physical and electrochemical properties were characterized. The results show that LMS/C MBS nanoparticles exhibit a nearly pure crystalline phase with orthorhombic structure and have a spherical shape and a uniform particle size distribution centered at a diameter of 22.5 nm. Galvanostatic charge-discharge measurements reveal that LMS/C MBS delivers an initial discharge capacity of about 260 mA h g(-1) at a current rate of 16.5 mA g(-1) in the voltage range of 1.5-4.8 V (vs. Li/Li+), while LMS MBS (LMS without a carbon source under MBS) and LMS/C SG (LMS with a carbon source using the conventional sal-gel method) possess lower capacities of 168 and 9 mA h g(-1) respectively. The improved electrochemical performance of LMS/C MBS can be ascribed to the uniform nanoparticle size, mesoporous structure, and in-situ carbon coating, which can enhance the electronic conductivity as well as the lithium ion diffusion coefficient. (C) 2015 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:522 / 529
页数:8
相关论文
共 50 条
  • [1] Synthesis and characterization of high capacity Li2MnSiO4/C cathode material for lithium-ion battery
    Qu, Long
    Fang, Shaohua
    Yang, Li
    Hirano, Shin-ichi
    JOURNAL OF POWER SOURCES, 2014, 252 : 169 - 175
  • [2] Li2MnSiO4 nanorods-embedded carbon nanofibers for lithium-ion battery electrodes
    Song, Hee Jo
    Kim, Jae-Chan
    Choi, Mingu
    Choi, Changhoon
    Dar, Mushtaq Ahmad
    Lee, Chan Woo
    Park, Sangbaek
    Kim, Dong-Wan
    ELECTROCHIMICA ACTA, 2015, 180 : 756 - 762
  • [3] Synthesis and characterization of pristine Li2MnSiO4 and Li2MnSiO4/C cathode materials for lithium ion batteries
    Zhang, Qianqian
    Zhuang, Quanchao
    Xu, Shoudong
    Qiu, Xiangyun
    Cui, Yongli
    Shi, Yueli
    Qiang, Yinghuai
    IONICS, 2012, 18 (05) : 487 - 494
  • [4] High field phase transition of cathode material Li2MnSiO4 for lithium-ion battery
    Yang, Feng
    Xia, Zhengcai
    Huang, Sha
    Zhang, Xiaoxing
    Song, Yujie
    Xiao, Guiling
    Shao, Gangqin
    Liu, Yong
    Deng, Han
    Jiang, Dequan
    Ouyang, Zhongwen
    MATERIALS RESEARCH EXPRESS, 2020, 7 (02)
  • [5] Synthesis and characterization of pristine Li2MnSiO4 and Li2MnSiO4/C cathode materials for lithium ion batteries
    Qianqian Zhang
    Quanchao Zhuang
    Shoudong Xu
    Xiangyun Qiu
    Yongli Cui
    Yueli Shi
    Yinghuai Qiang
    Ionics, 2012, 18 : 487 - 494
  • [6] Hydrothermal synthesis of the Li2MnSiO4/C nanocomposite as a cathode material for lithium-ion batteries
    Jiang, Xiaolei
    Xu, Huayun
    Liu, Jing
    Qian, Yitai
    MATERIALS LETTERS, 2013, 113 : 9 - 12
  • [7] Modification of Li2MnSiO4 cathode materials for lithium-ion batteries: a review
    Cheng, Qiaohuan
    He, Wen
    Zhang, Xudong
    Li, Mei
    Wang, Lianzhou
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (22) : 10772 - 10797
  • [8] High-yield synthesis of Li2MnSiO4/C composites by hot isostatic pressing as lithium-ion battery cathodes
    Meng Zhang
    Qiuling Chen
    Baoji Miao
    Shikai Liu
    Journal of Solid State Electrochemistry, 2015, 19 : 943 - 947
  • [9] High-yield synthesis of Li2MnSiO4/C composites by hot isostatic pressing as lithium-ion battery cathodes
    Zhang, Meng
    Chen, Qiuling
    Miao, Baoji
    Liu, Shikai
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (04) : 943 - 947
  • [10] Ionothermal synthesis and characterization of Li2MnSiO4/C composites as cathode materials for lithium-ion batteries
    Li, Xueliang
    Liu, Yunfu
    Xiao, Zhenghui
    Guo, Wei
    Zhang, Rui
    CERAMICS INTERNATIONAL, 2014, 40 (01) : 289 - 296