Existence, unique continuation and symmetry of least energy nodal solutions to sublinear Neumann problems

被引:15
|
作者
Parini, Enea [1 ]
Weth, Tobias [2 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR 7373, F-13453 Marseille, France
[2] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
关键词
Sublinear Neumann problem; Unique continuation; Foliated Schwarz symmetry; Nodal solutions; DIFFERENTIAL-EQUATIONS;
D O I
10.1007/s00209-015-1444-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the sublinear problem {-Delta u = vertical bar u vertical bar(q-2)u in Omega, u(v) = 0 on partial derivative Omega, where Omega subset of R-N is a bounded domain, and 1 <= q < 2. For q - 1, vertical bar u vertical bar(q-2)u will be identified with sgn (u). We establish a variational principle for least energy nodal solutions, and we investigate their qualitative properties. In particular, we show that they satisfy a unique continuation property (their zero set is Lebesgue-negligible). Moreover, if Omega is radial, then least energy nodal solutions are foliated Schwarz symmetric, and they are nonradial in case Omega is a ball. The case q=1 requires special attention since the formally associated energy functional is not differentiable, and many arguments have to be adjusted.
引用
收藏
页码:707 / 732
页数:26
相关论文
共 50 条
  • [1] Existence, unique continuation and symmetry of least energy nodal solutions to sublinear Neumann problems
    Enea Parini
    Tobias Weth
    Mathematische Zeitschrift, 2015, 280 : 707 - 732
  • [2] Existence and symmetry of least energy nodal solutions for Hamiltonian elliptic systems
    Bonheure, Denis
    dos Santos, Ederson Moreira
    Ramos, Miguel
    Tavares, Hugo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (06): : 1075 - 1107
  • [3] On the existence of small energy solutions for a sublinear Neumann problem
    Du, Miao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (01) : 610 - 624
  • [4] Partial symmetry of least energy nodal solutions to some variational problems
    Thomas Bartsch
    Tobias Weth
    Michel Willem
    Journal d’Analyse Mathématique, 2005, 96 : 1 - 18
  • [5] Partial symmetry of least energy nodal solutions to some variational problems
    Bartsch, T
    Weth, T
    Willew, M
    JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1): : 1 - 18
  • [6] Existence and Location of Nodal Solutions for Quasilinear Convection–Absorption Neumann Problems
    Abdelkrim Moussaoui
    Kamel Saoudi
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [8] Least energy solutions of semilinear Neumann problems and asymptotics
    Pan, XB
    Xu, XW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 201 (02) : 532 - 554
  • [9] Existence of Solutions for Sublinear Kirchhoff Problems with Sublinear Growth
    Yang, Wei
    Wang, Zhan
    Yao, Zhuo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [10] Existence and continuation of solutions for a nonlinear Neumann problem
    Muchewicz, Krzysztof
    Rybicki, Slawomir
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) : 3423 - 3449