Impact of direct butane microtubular solid oxide fuel cells

被引:36
|
作者
Sumi, Hirofumi [1 ]
Yamaguchi, Toshiaki [1 ]
Hamamoto, Koichi [1 ]
Suzuki, Toshio [1 ]
Fujishiro, Yoshinobu [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Adv Mfg Res Inst, Nagoya, Aichi 4638560, Japan
关键词
Solid oxide fuel cell (SOFC); Ni-based anodes; Ceria; Hydrocarbon; Carbon deposition; SCANDIA-STABILIZED ZIRCONIA; SOFC ANODES; CARBON DEPOSITION; HYDROCARBON FUELS; DIRECT-OXIDATION; METHANE; STEAM; PERFORMANCE; NI;
D O I
10.1016/j.jpowsour.2012.07.106
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigated direct butane power generation for microtubular solid oxide fuel cells with a diameter of less than 2 mm. Conventional Ni-stabilized zirconia anodes deteriorated rapidly over a period of 3-4 h at 610 degrees C and a low steam/carbon (S/C) ratio of 0.044 in butane due to a large amount of carbon deposition. For the Ni-Gd doped ceria (Ni-GDC) anode, the power could be generated continuously for more than 24 h at 610 degrees C and S/C = 0.044 in butane. The rate of carbon deposition for the Ni-GDC was slower than that for the Ni-stabilized zirconia at 610 degrees C. Ceria can be reduced from Ce4+ to Ce3+, which causes the suppression of carbon deposition on the Ni-GDC anode in butane at low humidity. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 78
页数:5
相关论文
共 50 条
  • [1] Effect of Operating Temperature on Durability for Direct Butane Utilization of Microtubular Solid Oxide Fuel Cells
    Sumi, Hirofumi
    Yamaguchi, Toshiaki
    Hamamoto, Koichi
    Suzuki, Toshio
    Fujishiro, Yoshinobu
    [J]. ELECTROCHEMISTRY, 2013, 81 (02) : 86 - 91
  • [2] Direct hydrocarbon utilization in microtubular solid oxide fuel cells
    Sumi, Hirofumi
    Yamaguchi, Toshiaki
    Suzuki, Toshio
    Shimada, Hiroyuki
    Hamamoto, Koichi
    Fujishiro, Yoshinobu
    [J]. JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2015, 123 (1436) : 213 - 216
  • [3] Microtubular Solid Oxide Fuel Cells (mSOFCs)
    Kendall, M.
    Meadowcroft, A. D.
    Kendall, K.
    [J]. SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 123 - 131
  • [4] Progress in Microtubular Solid Oxide Fuel Cells
    Kendall, Kevin
    [J]. INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2010, 7 (01) : 1 - 9
  • [5] Application of silver in microtubular solid oxide fuel cells
    Majewski A.J.
    Dhir A.
    [J]. Materials for Renewable and Sustainable Energy, 2018, 7 (3)
  • [6] High Efficiency Reversible Solid Oxide Microtubular Fuel Cells
    Laguna-Bercero, M. A.
    Campana, R.
    Larrea, A.
    Kilner, J. A.
    Orera, V. M.
    [J]. SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 865 - 872
  • [7] Microstructure and Performance of Anode for Microtubular Solid Oxide Fuel Cells
    Yang Nai-Tao
    Shen Yi-Chi
    Yan Wei
    Meng Xiu-Xia
    Tan Xiao-Yao
    Ma Zi-Feng
    [J]. JOURNAL OF INORGANIC MATERIALS, 2014, 29 (12) : 1246 - 1252
  • [8] Portable solid oxide fuel cells using butane gas as fuel
    Hayashi, K
    Yamamoto, O
    Minoura, H
    [J]. SOLID STATE IONICS, 2000, 132 (3-4) : 343 - 345
  • [9] Internal Partial Oxidation Reforming of Butane and Steam Reforming of Ethanol for Anode-supported Microtubular Solid Oxide Fuel Cells
    Sumi, H.
    Yamaguchi, T.
    Shimada, H.
    Fujishiro, Y.
    Awano, M.
    [J]. FUEL CELLS, 2017, 17 (06) : 875 - 881
  • [10] Mathematical Modeling and Experimental Studies of Microtubular Solid Oxide Fuel Cells
    Zazhigalov, S. V.
    Popov, M. P.
    Nemudry, A. P.
    Belotserkovsky, V. A.
    Zagoruiko, A. N.
    [J]. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2020, 54 (04) : 647 - 654