Exercise Motion Classification from Large-Scale Wearable Sensor Data Using Convolutional Neural Networks

被引:0
|
作者
Um, Terry Taewoong [1 ]
Babakeshizadeh, Vahid [2 ]
Kulic, Dana [1 ]
机构
[1] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[2] Push Inc, Toronto, ON M5B 2G9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
HUMAN ACTIVITY RECOGNITION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ability to accurately identify human activities is essential for developing automatic rehabilitation and sports training systems. In this paper, large-scale exercise motion data obtained from a forearm-worn wearable sensor are classified with a convolutional neural network (CNN). Time-series data consisting of accelerometer and orientation measurements are formatted as images, allowing the CNN to automatically extract discriminative features. A comparative study on the effects of image formatting and different CNN architectures is also presented. The best performing configuration classifies 50 gym exercises with 92.1% accuracy.
引用
收藏
页码:2385 / 2390
页数:6
相关论文
共 50 条
  • [1] Large-scale Video Classification with Convolutional Neural Networks
    Karpathy, Andrej
    Toderici, George
    Shetty, Sanketh
    Leung, Thomas
    Sukthankar, Rahul
    Fei-Fei, Li
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1725 - 1732
  • [2] Vehicle classification for large-scale traffic surveillance videos using Convolutional Neural Networks
    Zhuo, Li
    Jiang, Liying
    Zhu, Ziqi
    Li, Jiafeng
    Zhang, Jing
    Long, Haixia
    MACHINE VISION AND APPLICATIONS, 2017, 28 (07) : 793 - 802
  • [3] Vehicle classification for large-scale traffic surveillance videos using Convolutional Neural Networks
    Li Zhuo
    Liying Jiang
    Ziqi Zhu
    Jiafeng Li
    Jing Zhang
    Haixia Long
    Machine Vision and Applications, 2017, 28 : 793 - 802
  • [4] On the Large-Scale Transferability of Convolutional Neural Networks
    Zheng, Liang
    Zhao, Yali
    Wang, Shengjin
    Wang, Jingdong
    Yang, Yi
    Tian, Qi
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING: PAKDD 2018 WORKSHOPS, 2018, 11154 : 27 - 39
  • [5] Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification
    Maggiori, Emmanuel
    Tarabalka, Yuliya
    Charpiat, Guillaume
    Alliez, Pierre
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02): : 645 - 657
  • [6] Large-scale Continuous Gesture Recognition Using Convolutional Neural Networks
    Wang, Pichao
    Li, Wanqing
    Liu, Song
    Zhang, Yuyao
    Gao, Zhimin
    Ogunbona, Philip
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 13 - 18
  • [7] Large-scale parcellation of the ventricular system using convolutional neural networks
    Atlason, Hans E.
    Shao, Muhan
    Robertsson, Vidar
    Sigurdsson, Sigurdur
    Gudnason, Vilmundur
    Prince, Jerry L.
    Ellingsen, Lotta M.
    MEDICAL IMAGING 2019: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2019, 10953
  • [8] Large-scale Isolated Gesture Recognition Using Convolutional Neural Networks
    Wang, Pichao
    Li, Wanqing
    Liu, Song
    Gao, Zhimin
    Tang, Chang
    Ogunbona, Philip
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 7 - 12
  • [9] Structural Damage Classification of Large-Scale Bridges Using Convolutional Neural Networks and Time Domain Responses
    Chencho, Jun
    Li, Jun
    Hao, Hong
    Li, Ling
    JOURNAL OF PERFORMANCE OF CONSTRUCTED FACILITIES, 2024, 38 (04)
  • [10] Deep convolutional and conditional neural networks for large-scale genomic data generation
    Yelmen B.
    Decelle A.
    Boulos L.L.
    Szatkownik A.
    Furtlehner C.
    Charpiat G.
    Jay F.
    PLoS Computational Biology, 2023, 19 (10 October)