A combined study of molecular dynamics (MD) simulation, experimental, and linear regression analysis method is presented for hindered phenol of 3,9-bis[1,1-dimethyl-2-{b-(3-tertbutyl-4-hydroxy-5-methylphenyl)propionyloxy}ethyl]-2,4,8,10-tetraoxaspiro-[5,5]-undecane (AO-80)/nitrile-butadiene rubber/linear phenolic resin (AO-80/NBR/PR) composites with different AO-80 contents to quantitatively establish the relations between microstructure and damping performance. The number of hydrogen bonds (N-HBs), the fractional free volume (FFV), and the binding energy (E-binding) of AO-80/NBR/PR composites with different AO-80 content are calculated by MD simulation from the microscopic scale. Damping parameters, including the loss factor peak (tan delta(max)) and the loss peak area (TA) (tan delta > 0.3), are obtained by dynamic mechanical analysis from macroscopic scale. The quantitative relationships between microstructure parameters (N-HBs,E-binding, and FFV) and macroscopic damping properties (tan delta(max)and TA) are obtained by linear regression analysis. This research is expected to provide a theoretical guidance for improving the damping performance of rubber-based organic hybrid composites.