Linearly polarized, narrow-linewidth, and tunable Yb:YAG thin-disk laser

被引:22
|
作者
Rumpel, Martin [1 ]
Voss, Andreas [1 ]
Moeller, Michael [2 ]
Habel, Florian [3 ]
Moormann, Christian [2 ]
Schacht, Martin [3 ]
Graf, Thomas [1 ]
Ahmed, Marwan Abdou [1 ]
机构
[1] Univ Stuttgart, Inst Strahlwerkzeuge, D-7000 Stuttgart, Germany
[2] AMO GmbH, D-52074 Aachen, Germany
[3] LASER COMPONENTS GmbH, D-82140 Olching, Germany
关键词
EFFICIENCY; MODE; YB;
D O I
10.1364/OL.37.004188
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on the design, fabrication, and implementation of grating-waveguide structures (GWS) for intracavity polarization and wavelength selection as well as wavelength tuning. The GWS discussed in this Letter is a combination of a low-index leaky-mode waveguide, a subwavelength diffraction grating, and a highly reflective mirror that was designed to operate in Littrow configuration. Using our device as the end mirror of an Yb:YAG thin-disk laser allowed the extraction of beams that exhibit an extremely narrow laser emission bandwidth of approximate to 25 pm FWHM and a high degree of linear polarization of 99 +/- 0.5%. Moreover, the GWS allows a wavelength tuning range from 1007 to 1053 nm. The high-power suitability and the low loss of the GWS was demonstrated by the intracavity use in an Yb: YAG thin-disk laser with an output power of 325 W in multimode operation (M-2 = 6) and with 110 W in fundamental-mode operation (M-2 approximate to 1.2), exhibiting optical efficiencies of 53.2% and 36.2%, respectively. An output power of 1.8 kW, corresponding to a power density of 125 kW/cm(2) on the grating, was achieved in further higher-power experiments. (C) 2012 Optical Society of America
引用
收藏
页码:4188 / 4190
页数:3
相关论文
共 50 条
  • [1] A VBG-Stabilized Narrow Linewidth, Spectrally Tunable, Yb:YAG Thin-Disk Laser
    Hemmer, M.
    Vaupel, A.
    Ramme, M.
    Willis, C.
    Bradford, J.
    Smirnov, V.
    Shah, L.
    Glebov, L.
    Richardson, M.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [2] Yb:YAG thin-disk laser is single-frequency tunable
    Brinkmann, U
    LASER FOCUS WORLD, 2006, 42 (03): : 18 - +
  • [3] Cryogenic Yb:YAG Thin-Disk Laser
    Vretenar, N.
    Carson, T.
    Lucas, T.
    Newell, T.
    Latham, W. P.
    Peterson, P.
    Bostanci, H.
    Lindauer, J. J.
    Saarloos, B. A.
    Rini, D. P.
    TECHNOLOGIES FOR OPTICAL COUNTERMEASURES VIII, 2011, 8187
  • [4] High-power radially polarized Yb:YAG thin-disk laser with high efficiency
    Ahmed, Marwan Abdou
    Haefner, Matthias
    Vogel, Moritz
    Pruss, Christof
    Voss, Andreas
    Osten, Wolfgang
    Graf, Thomas
    OPTICS EXPRESS, 2011, 19 (06): : 5093 - 5104
  • [5] Improvement of thermal management in the composite Yb:YAG/YAG thin-disk laser
    Kuznetsov, I. I.
    Mukhin, I. B.
    Palashov, O. V.
    LASER PHYSICS, 2016, 26 (04)
  • [6] Thin-disk laser based on an Yb:YAG/YAG composite active element
    Kuznetsov, I. I.
    Mukhin, I. B.
    Vadimova, O. L.
    Palashov, O. V.
    QUANTUM ELECTRONICS, 2015, 45 (03) : 207 - 210
  • [7] Linearly-polarized narrow-linewidth random fiber laser seeded fiber MOPA
    Xu, Jiangming
    Huang, Long
    Jiang, Man
    Ye, Jun
    Ma, Pengfei
    Zhang, Hanwei
    Wu, Jian
    Xiao, Hu
    Leng, Jinyong
    Zhou, Pu
    2017 16TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS & NETWORKS (ICOCN 2017), 2017,
  • [8] Yb:YAG Thin-Disk Laser Performance at Room and Cryogenic Temperatures
    Vretenar, N.
    Carson, T.
    Newell, T. C.
    Lucas, T.
    Latham, W. P.
    Peterson, P.
    SOLID STATE LASERS XXI: TECHNOLOGY AND DEVICES, 2012, 8235
  • [9] Cryogenic ceramic 277 watt Yb:YAG thin-disk laser
    Vretenar, Natasa
    Newell, Tim C.
    Carson, Tyler
    Peterson, Phillip
    Lucas, Tim
    Latham, William P.
    Bostanci, Huseyin
    Huddle-Lindauer, Jennifer J.
    Saarloos, Benjamin A.
    Rini, Dan
    OPTICAL ENGINEERING, 2012, 51 (01)
  • [10] Alexandrite: an attractive thin-disk laser material alternative to Yb:YAG?
    Demirbas, Umit
    Kaertner, Franz X.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (02) : 459 - 472