Stabilized Lagrange multiplier methods for bilateral elastic contact with friction

被引:37
|
作者
Heintz, P [1 ]
Hansbo, P [1 ]
机构
[1] Chalmers Univ Technol, Dept Appl Mech, SE-41296 Gothenburg, Sweden
关键词
contact; non-matching grids; stabilized Lagrange multipliers; friction;
D O I
10.1016/j.cma.2005.09.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In most finite element (FE) codes contact is checked only at the nodes, corresponding to the use of pointwise constraints. However, this approach might not be stable in case the bodies coming into contact have non-matching grids at the contact interface. To alleviate this problem, we propose a stabilized Lagrange multiplier method, based on a global polynomial multiplier, for the finite element solution of (non)linear elastic contact problems with non-matching grids. In particular, our approach allows us to avoid integrating products of different finite element basis functions on the surface meshes at the contact zone. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:4323 / 4333
页数:11
相关论文
共 50 条
  • [1] On the connection between the stabilized Lagrange multiplier and Nitsche's methods
    Juntunen, Mika
    NUMERISCHE MATHEMATIK, 2015, 131 (03) : 453 - 471
  • [2] On the connection between the stabilized Lagrange multiplier and Nitsche’s methods
    Mika Juntunen
    Numerische Mathematik, 2015, 131 : 453 - 471
  • [3] A STABILIZED LAGRANGE MULTIPLIER METHOD FOR THE ENRICHED FINITE-ELEMENT APPROXIMATION OF CONTACT PROBLEMS OF CRACKED ELASTIC BODIES
    Amdouni, Saber
    Hild, Patrick
    Lleras, Vanessa
    Moakher, Maher
    Renard, Yves
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04): : 813 - 839
  • [4] A stabilized Lagrange multiplier method for the enriched finite-element approximation of Tresca contact problems of cracked elastic bodies
    Amdouni, S.
    Moakher, M.
    Renard, Y.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 270 : 178 - 200
  • [5] A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics
    Hild, Patrick
    Renard, Yves
    NUMERISCHE MATHEMATIK, 2010, 115 (01) : 101 - 129
  • [6] A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics
    Patrick Hild
    Yves Renard
    Numerische Mathematik, 2010, 115 : 101 - 129
  • [7] A reverse augmented constraint preconditioner for Lagrange multiplier methods in contact mechanics
    Franceschini, Andrea
    Ferronato, Massimiliano
    Frigo, Matteo
    Janna, Carlo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 392
  • [8] A reverse augmented constraint preconditioner for Lagrange multiplier methods in contact mechanics
    Franceschini, Andrea
    Ferronato, Massimiliano
    Frigo, Matteo
    Janna, Carlo
    Computer Methods in Applied Mechanics and Engineering, 2022, 392
  • [9] A Stabilized Lagrange Multiplier Method for the Finite Element Approximation of Frictional Contact Problems in Elastostatics
    Lleras, V.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2009, 4 (01) : 163 - 182
  • [10] Algebraically stabilized Lagrange multiplier method for frictional contact mechanics with hydraulically active fractures
    Franceschini, Andrea
    Castelletto, Nicola
    White, Joshua A.
    Tchelepi, Hamdi A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 368