Transpiration of Poplar Based Short Rotation Coppice under Drought Stress

被引:0
|
作者
Orsag, M. [1 ]
Fischer, M. [1 ]
Trnka, M. [1 ]
Tripathi, A. M. [1 ]
Zalud, Z. [2 ]
机构
[1] Global Change Res Ctr AS CR, Brno, Czech Republic
[2] Mendel Univ Brno, Inst agrosyst & Bioclimatol, Brno, Czech Republic
来源
关键词
sap flow; transpiration; short rotation coppice; poplar; modeling; BIOMASS PRODUCTION; WILLOW; CLONES;
D O I
暂无
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
This study compares canopy transpiration (T) of two treatments with different levels of water availability calculated using sap flow (SF) measurements based on thermal dissipation (TD) method. The study was conducted in a poplar based short rotation coppice (SRC) plantation in Czech-Moravian highlands during the summer of 2012 (DOY 154-274). There are 3 pairs of experimental plots under research. Each pair comprises a control plot, and a neighboring plot, equipped with a roof system, draining 40% of incoming rain water away (the water reduced plot). Sap flow of 4 trees within the control plots and 4 trees within the water reduced plots was measured. Data from both treatments were scaled up to stand level separately. Then, potential transpiration (Tp) of SRC for the period DOY 154-183) was successfully (R-2=0.89) modeled, as a function of global radiation and vapor pressure deficit (VPD), using the Penman-Monteith formula and a parameterized semi-empirical stomatal conductance model. Finally, canopy transpiration from controls (T-c) and water reduced plots (T-s) were compared with modeled Tp and further analyzed. In the period June-September the mean daily T-c=1.86 mm, T-s=1.38 mm and T-p=2.27 mm; daily maximum occurred on 24 June - T-c=3.75 mm, T-s=2.84 mm and T-p=3.89 mm. The T totals over the study period reached T-c=226 mm, T-s=168 mm and T-p=276 mm. T of both treatments differed depending on actual soil water availability. Our results show that a 40% reduction in throughfall resulted in a 26% reduction in transpiration over the four months study period. Results also confirmed that even a low number of sensors (4+4) can be used for credible estimates of canopy transpiration.
引用
收藏
页码:231 / 237
页数:7
相关论文
共 50 条
  • [1] TRANSPIRATION AND BIOMASS INCREMENT IN SHORT ROTATION POPLAR COPPICE
    Orsag, M.
    Trnka, M.
    MENDELNET 2011, 2011, : 688 - 693
  • [2] Harvesting systems for poplar short rotation coppice
    Santangelo, E.
    Scarfone, A.
    Del Giudice, A.
    Acampora, A.
    Alfano, V.
    Suardi, A.
    Pari, L.
    INDUSTRIAL CROPS AND PRODUCTS, 2015, 75 : 85 - 92
  • [3] Poplar Short Rotation Coppice Plantations under Mediterranean Conditions: The Case of Spain
    Oliveira, Nerea
    Perez-Cruzado, Cesar
    Canellas, Isabel
    Rodriguez-Soalleiro, Roque
    Sixto, Hortensia
    FORESTS, 2020, 11 (12): : 1 - 43
  • [4] Pyrolysis kinetics of short rotation coppice poplar biomass
    Rego, Filipe
    Soares Dias, Ana P.
    Casquilho, Miguel
    Rosa, Fatima C.
    Rodrigues, Abel
    ENERGY, 2020, 207
  • [5] POPLAR SHORT-ROTATION COPPICE IN SOUTHERN ITALY
    Facciotto, Gianni
    Bergante, Sara
    Nervo, Giuseppe
    PAPERS OF THE 25TH EUROPEAN BIOMASS CONFERENCE, 2017, : 262 - 264
  • [6] Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice
    Chang Dou
    Wilian F. Marcondes
    Jessica E. Djaja
    Renata Bura
    Rick Gustafson
    Biotechnology for Biofuels, 10
  • [7] Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice
    Dou, Chang
    Marcondes, Wilian F.
    Djaja, Jessica E.
    Bura, Renata
    Gustafson, Rick
    BIOTECHNOLOGY FOR BIOFUELS, 2017, 10
  • [8] Nutrients and energy in proleptic branches and leaves of poplar under a short-rotation coppice
    Vanbeveren, S. P. P.
    Gebauer, R.
    Plichta, R.
    Volarik, D.
    Ceulemans, R.
    BIOMASS & BIOENERGY, 2016, 85 : 271 - 277
  • [9] Sensitivity of short rotation poplar coppice biomass productivity to the throughfall reduction - Estimating future drought impacts
    Orsag, Matej
    Fischer, Milan
    Tripathi, Abhishek Mani
    Zalud, Zdenek
    Trnka, Miroslav
    BIOMASS & BIOENERGY, 2018, 109 : 182 - 189
  • [10] Effects of short rotation coppice with willows and poplar on soil ecology
    Baum, Christel
    Leinweber, Peter
    Weih, Martin
    Lamersdorf, Norbert
    Dimitriou, Ioannis
    LANDBAUFORSCHUNG VOLKENRODE, 2009, 59 (03): : 183 - 196