Exact solution of a boundary value problem in semiconductor kinetic theory

被引:3
|
作者
deGroot, EH
Dalitz, C
机构
[1] Universität Bielefeld, Theoretische Physik, 33615 Bielefeld
关键词
D O I
10.1063/1.532111
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An explicit solution of the stationary one-dimensional half-space boundary value problem for the linear Boltzmann equation is presented in the presence of an arbitrarily high constant external field. The collision kernel is assumed to be separable, which is also known as ''relaxation time approximation;'' the relaxation time may depend on the electron velocity. Our method consists in a transformation of the half-space problem into a non-normal singular integral equation, which has an explicit solution. (C) 1997 American Institute of Physics.
引用
收藏
页码:4629 / 4643
页数:15
相关论文
共 50 条
  • [2] The Boundary Value Problem of the Theory of Elasticity in a Rectangle: An Exact Solution
    Menshova, I., V
    Kerzhaev, A. P.
    Shulyakovskaya, T. D.
    Zeng, X.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS 2020), 2020, 2302
  • [4] Exact solution of one boundary-value problem
    A. O. Botyuk
    Ukrainian Mathematical Journal, 1997, 49 (7) : 1120 - 1124
  • [5] EXACT SOLUTION OF A NON-LINEAR BOUNDARY-VALUE PROBLEM OF THE THEORY OF CHEMICAL REACTORS
    BERMAN, VS
    VOSTOKOV, VV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1982, 46 (03): : 411 - 414
  • [6] Nonhomogeneous Boundary Value Problem for a Clamped Rectangle: Exact Solution
    Kerzhaev, A. P.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS 2020), 2020, 2302
  • [7] A boundary value problem in the theory of elasticity for a rectangle: exact solutions
    Mikhail D. Kovalenko
    Irina V. Menshova
    Alexander P. Kerzhaev
    Guangming Yu
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [8] A boundary value problem in the theory of elasticity for a rectangle: exact solutions
    Kovalenko, Mikhail D.
    Menshova, Irina, V
    Kerzhaev, Alexander P.
    Yu, Guangming
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):
  • [9] A boundary value problem for a kinetic model describing electron flow in a semiconductor
    Drago, CR
    Majorana, A
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2000, 23 (08) : 735 - 750
  • [10] Asymptotic solution of the theory of shells boundary value problem
    Andrianov, I. V.
    Awrejcewicz, J.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2007, 2007