Fast Numerical Solutions of Gas-Particle Two-Phase Vacuum Plumes

被引:2
|
作者
Ren, ZhaoXin [1 ]
Wang, Bing [1 ]
Zhang, Huiqiang [1 ]
机构
[1] Tsinghua Univ, Sch Aerosp, Beijing 100084, Peoples R China
关键词
FREE-MOLECULAR FLOW; EXPANSION;
D O I
10.1155/2013/765627
中图分类号
O414.1 [热力学];
学科分类号
摘要
The free molecule point source and Simons models coupled to the particle Lagrangian trajectory model are employed, respectively, to establish the fast solving method for gas-particle two-phase vacuum plumes. Density, velocity and temperature distributions of gas phase, and velocity and temperature of particles are solved to present the flow properties of two-phase plumes. The method based on free molecule point source model predicts the velocity and temperature distributions of vacuum plumes more reasonably and accurately than the Simons model. Comparisons of different drag coefficients show that Loth's drag formula can calculate exactly particle initial acceleration process for high Re-r and M-r two-phase flows. The response characteristics of particles along their motion paths are further analyzed. Smaller particles can easily reach momentum equilibrium, while larger ones accelerate very difficultly. The thermal response is more relaxed than momentum response for different particle sizes. The present study is guidable to consider the effects of two-phase plumes on spacecraft in engineering.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [1] Application of numerical modelling for gas-particle two-phase flow
    1600, Chinese Soc of Electrical Engineering, Beijing, China (15):
  • [2] Numerical analysis of the gas-particle two-phase flow in a multistep dust collector
    Yao, Jiafeng
    Wang, Zheng
    Yu, Minghao
    Wang, Yaoyao
    Chen, Bai
    Wu, Hongtao
    CURRENT SCIENCE, 2019, 117 (12): : 1999 - 2005
  • [3] Numerical simulation of gas-particle two-phase single jets by vortex method
    Department of Aircraft Engineering, Air Force Institute of Technology, No.1, Jyulun Rd., Kaohsiung 820, Taiwan, Taiwan
    不详
    Hangkong Taikong ji Minhang Xuekan, 2007, 1 (15-24):
  • [4] Numerical analysis of gas-particle two-phase wake flow by vortex method
    Uchiyama, T
    Yagami, H
    POWDER TECHNOLOGY, 2005, 149 (2-3) : 112 - 120
  • [5] Numerical Simulation of Gas-Particle Two-Phase Flow in a Nozzle with DG Method
    Duan Maochang
    Yu Xijun
    Chen Dawei
    Qing Fang
    Zou Shijun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2019, 2019
  • [6] Numerical simulation of gas-particle two-phase mixing layer by vortex method
    Uchiyama, T
    Naruse, M
    POWDER TECHNOLOGY, 2002, 125 (2-3) : 111 - 121
  • [7] Numerical modeling of sand particle erosion at return bends in gas-particle two-phase flow
    Farokhipour, A.
    Monsoori, Z.
    Saffar-Avval, M.
    Ahmadi, G.
    SCIENTIA IRANICA, 2018, 25 (06) : 3231 - 3242
  • [8] NUMERICAL SIMULATION OF GAS-PARTICLE TWO-PHASE FLOW IN CORNERS TANGENTIAL STREAMS GASIFIER
    Yang, Mo
    Su, Dan
    Zhang, Yuwen
    Kang, Zhangyang
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B, 2012, : 783 - 788
  • [9] A NUMERICAL STUDY OF SAND PARTICLE EROSION IN A SERIES OF BALL SEATS IN GAS-PARTICLE TWO-PHASE FLOW
    Rasteh, A.
    Farokhipour, A.
    Rasoulian, M. A.
    Mansoori, Z.
    Saffar-Avval, M.
    Ahmadi, G.
    Mofakham, A. A.
    PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2019, VOL 5, 2019,
  • [10] Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydrodynamics
    Chen Fu-Zhen
    Qiang Hong-Fu
    Gao Wei-Ran
    ACTA PHYSICA SINICA, 2014, 63 (23)