HOMOGENIZATION OF ELASTIC WAVES IN FLUID-SATURATED POROUS MEDIA USING THE BIOT MODEL

被引:19
|
作者
Mielke, Alexander [1 ,2 ]
Rohan, Eduard [3 ]
机构
[1] Weierstrass Inst Angew Anal & Stochast, D-10117 Berlin, Germany
[2] Humboldt Univ, Inst Math, D-12489 Berlin, Germany
[3] Univ W Bohemia, Fac Sci Appl, Dept Mech, Plzen 30614, Czech Republic
来源
关键词
Fluid-saturated porous media; homogenization; periodic media; wave propagation; Biot model; dispersion; DOUBLE-POROSITY; PROPAGATION; ATTENUATION;
D O I
10.1142/S0218202512500637
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider periodically heterogeneous fluid-saturated poroelastic media described by the Biot model with inertia effects. The weak and semistrong formulations for displacement, seepage and pressure fields involve three equations expressing the momentum and mass balance and the Darcy law. Using the two-scale homogenization method, we obtain the limit two-scale problem and prove the existence and uniqueness of its weak solutions. The Laplace transformation in time is used to decouple the macroscopic and microscopic scales. It is shown that the seepage velocity is eliminated from the macroscopic equations involving strain and pressure fields only. The plane harmonic wave propagation is studied using an example of layered medium. Illustrations show some influence of the orthotropy on the dispersion phenomena.
引用
收藏
页码:873 / 916
页数:44
相关论文
共 50 条
  • [1] COMPRESSIONAL WAVES IN FLUID-SATURATED ELASTIC POROUS-MEDIA
    GARG, SK
    NAYFEH, AH
    GOOD, AJ
    [J]. JOURNAL OF APPLIED PHYSICS, 1974, 45 (05) : 1968 - 1974
  • [2] Homogenization of the fluid-saturated piezoelectric porous media
    Rohan, E.
    Lukes, V.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2018, 147 : 110 - 125
  • [3] Optimal bounds for attenuation of elastic waves in porous fluid-saturated media
    Glubokovskikh, Stanislav
    Gurevich, Boris
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2017, 142 (05): : 3321 - 3329
  • [4] Modelling of waves in fluid-saturated porous media with high contrast heterogeneity: homogenization approach
    Rohan, Eduard
    Naili, Salah
    Vu-Hieu Nguyen
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2018, 98 (09): : 1699 - 1733
  • [5] Elastic waves in non-Newtonian (Maxwell) fluid-saturated porous media
    Cui, ZW
    Liu, JX
    Wang, KX
    [J]. WAVES IN RANDOM MEDIA, 2003, 13 (03): : 191 - 203
  • [6] Influence of interface condition on reflection of elastic waves in fluid-saturated porous media
    Qi, Qiaomu
    Cao, Jun-Xin
    Wang, Xing-Jian
    Gao, Jiajia
    [J]. GEOPHYSICS, 2021, 86 (04) : MR223 - MR233
  • [7] Elastic waves in Maxwell fluid-saturated porous media with the squirt flow mechanism
    Cui Zhi-Wen
    Liu Jin-Xia
    Wang Chun-Xia
    Wang Ke-Xie
    [J]. ACTA PHYSICA SINICA, 2010, 59 (12) : 8655 - 8661
  • [8] Propagation of normal waves in an isolated porous fluid-saturated biot layer
    Molotkov L.A.
    [J]. Journal of Mathematical Sciences, 2002, 108 (5) : 758 - 771
  • [9] PROPAGATION OF WAVES IN A FLUID-SATURATED POROUS ELASTIC SOLID
    LEVY, T
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1979, 17 (09) : 1005 - 1014
  • [10] Rayleigh waves in orthotropic fluid-saturated porous media
    Pham Chi Vinh
    Aoudia, Abdelkrim
    Pham Thi Ha Giang
    [J]. WAVE MOTION, 2016, 61 : 73 - 82