ON THE COHOMOLOGY OF VECTOR FIELDS ON PARALLELIZABLE MANIFOLDS

被引:2
|
作者
Billig, Yuly [1 ]
Neeb, Karl-Hermann [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Tech Univ Darmstadt, D-64289 Darmstadt, Germany
关键词
Lie algebra of vector fields; Lie algebra cohomology; Gelfand-Fuks cohomology; extended affine Lie algebra;
D O I
10.5802/aif.2402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we determine for each parallelizable smooth compact manifold M the second cohomology spaces of the Lie algebra nu(M) of smooth vector fields on M with values in the module (Omega) over bar (p)(M) = Omega(p)(M)/d Omega(p-1)(M). The case of p = 1 is of particular interest since the gauge algebra of functions on M with values in a finite-dimensional simple Lie algebra has the universal central extension with center (Omega) over bar (1)(M) generalizing affine Kac-Moody algebras. The second cohomology H(2)(nu(M), (Omega) over bar (1)(M)) classifies twists of the semidirect product of nu(M) with the universal central extension of a gauge Lie algebra.
引用
收藏
页码:1937 / 1982
页数:46
相关论文
共 50 条