Strong convergence results for convex minimization and monotone variational inclusion problems in Hilbert space

被引:11
|
作者
Okeke, C. C. [1 ,2 ]
Izuchukwu, C. [1 ]
Mewomo, O. T. [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[2] DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Minimization problem; Monotone inclusion problem; Fixed point problem; Inverse strongly monotone; Maximal monotone operators; FIXED-POINT PROBLEM; COMMON SOLUTION; ALGORITHM; EQUILIBRIUM; MAPPINGS;
D O I
10.1007/s12215-019-00427-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a new modification of the Gradient Projection Algorithm and the Forward-Backward Algorithm. Using our proposed algorithms, we establish two strong convergence theorems for solving convex minimization problem, monotone variational inclusion problem and fixed point problem for demicontractive mappings in a real Hilbert space. Furthermore, we apply our results to solve split feasibility and optimal control problems. We also give two numerical examples of our algorithm in real Euclidean space of dimension 4 and in an infinite dimensional Hilbert space, to show the efficiency and advantage of our results.
引用
收藏
页码:675 / 693
页数:19
相关论文
共 50 条