INTEGRAL GROUP RING OF THE MATHIEU SIMPLE GROUP M24

被引:9
|
作者
Bovdi, Victor [1 ]
Konovalov, Alexander [2 ]
机构
[1] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
[2] Univ St Andrews, Sch Comp Sci, St Andrews KY16 9SX, Fife, Scotland
关键词
Zassenhaus conjecture; torsion unit; partial augmentation; integral group ring; Mathieu simple groups; TORSION UNITS;
D O I
10.1142/S0219498811005427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Zassenhaus conjecture for the normalized unit group of the integral group ring of the Mathieu sporadic group M-24. As a consequence, for this group we give a positive answer to the question by Kimmerle about prime graphs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] INTEGRAL GROUP RING OF THE MATHIEU SIMPLE GROUP M-12
    Bovdi, V. A.
    Konovalov, A. B.
    Siciliano, S.
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2007, 56 (01) : 125 - 136
  • [2] Integral group ring of the Mathieu simple group M23
    Bovdi, V. A.
    Konovalov, A. B.
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (07) : 2670 - 2680
  • [3] ON RANK 2 GEOMETRIES OF THE MATHIEU GROUP M24
    Kilic, Nayil
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2010, 18 (02): : 131 - 147
  • [4] A CHARACTERIZATION OF SIMPLE GROUP M24
    HELD, D
    SCHOENWA.UF
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (04): : 650 - &
  • [5] The overarching finite symmetry group of Kummer surfaces in the Mathieu group M24
    Taormina, A.
    Wendland, K.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (08):
  • [6] The overarching finite symmetry group of Kummer surfaces in the Mathieu group M24
    A. Taormina
    K. Wendland
    [J]. Journal of High Energy Physics, 2013
  • [7] MATHIEU-GROUP M24 AND MODULAR-FORMS
    KOIKE, M
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1985, 99 (SEP) : 147 - 157
  • [8] TORSION UNITS IN INTEGRAL GROUP RING OF THE MATHIEU SIMPLE GROUP M22
    Bovdi, V. A.
    Konovalov, A. B.
    Linton, S.
    [J]. LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2008, 11 : 28 - 39
  • [9] Notes on the K3 Surface and the Mathieu Group M24
    Eguchi, Tohru
    Ooguri, Hirosi
    Tachikawa, Yuji
    [J]. EXPERIMENTAL MATHEMATICS, 2011, 20 (01) : 91 - 96
  • [10] K3 surfaces, N=4 dyons and the Mathieu group M24
    Cheng, Miranda C. N.
    [J]. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2010, 4 (04) : 623 - 657