Finite Mixture of Linear Regression Models: An Adaptive Constrained Approach to Maximum Likelihood Estimation

被引:0
|
作者
Di Mari, Roberto [1 ]
Rocci, Roberto [1 ]
Gattone, Stefano Antonio [2 ]
机构
[1] Univ Tor Vergata, DEF, Rome, Italy
[2] Univ G DAnnunzio, DiSFPEQ, Chieti, Italy
来源
关键词
D O I
10.1007/978-3-319-42972-4_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to overcome the problems due to the unboundedness of the likelihood, constrained approaches to maximum likelihood estimation in the context of finite mixtures of univariate and multivariate normals have been presented in the literature. One main drawback is that they require a knowledge of the variance and covariance structure. We propose a fully data-driven constrained method for estimation of mixtures of linear regression models. The method does not require any prior knowledge of the variance structure, it is invariant under change of scale in the data and it is easy and ready to implement in standard routines.
引用
收藏
页码:181 / 186
页数:6
相关论文
共 50 条
  • [1] Constrained nonparametric maximum-likelihood estimation for mixture models
    Susko, E
    Kalbfleisch, JD
    Chen, J
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (04): : 601 - 617
  • [2] MAXIMUM LIKELIHOOD ESTIMATION OF LINEAR REGRESSION MODELS WITH RANDOM COEFFICIENTS
    KRISHNA, KL
    [J]. ECONOMETRICA, 1971, 39 (04) : 282 - &
  • [3] Penalized Estimation of a Finite Mixture of Linear Regression Models
    Rocci, Roberto
    Di Mari, Roberto
    Gattone, Stefano Antonio
    [J]. BUILDING BRIDGES BETWEEN SOFT AND STATISTICAL METHODOLOGIES FOR DATA SCIENCE, 2023, 1433 : 326 - 333
  • [4] Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models
    Di Mari, Roberto
    Rocci, Roberto
    Gattone, Stefano Antonio
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2020, 29 (01): : 49 - 78
  • [5] Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models
    Roberto Di Mari
    Roberto Rocci
    Stefano Antonio Gattone
    [J]. Statistical Methods & Applications, 2020, 29 : 49 - 78
  • [6] Maximum Likelihood Robust Regression by Mixture Models
    Sami S. Brandt
    [J]. Journal of Mathematical Imaging and Vision, 2006, 25 : 25 - 48
  • [7] Maximum likelihood robust regression by mixture models
    Brandt, Sami S.
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 25 (01) : 25 - 48
  • [8] Maximum nonparametric kernel likelihood estimation for multiplicative linear regression models
    Zhang, Jun
    Lin, Bingqing
    Yang, Yiping
    [J]. STATISTICAL PAPERS, 2022, 63 (03) : 885 - 918
  • [9] Maximum nonparametric kernel likelihood estimation for multiplicative linear regression models
    Jun Zhang
    Bingqing Lin
    Yiping Yang
    [J]. Statistical Papers, 2022, 63 : 885 - 918
  • [10] A conditional likelihood approach to residual maximum likelihood estimation in generalized linear models
    Smyth, GK
    Verbyla, AP
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (03): : 565 - 572