Parametric symplectic partitioned Runge-Kutta methods with energy-preserving properties for Hamiltonian systems

被引:19
|
作者
Wang, Dongling [1 ]
Xiao, Aiguo [1 ]
Li, Xueyang [1 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Hamiltonian systems; Partitioned Runge-Kutta methods; Symplecticity; Energy conservation;
D O I
10.1016/j.cpc.2012.09.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Based on W-transformation, some parametric symplectic partitioned Runge-Kutta (PRK) methods depending on a real parameter alpha are developed. For alpha = 0, the corresponding methods become the usual PRK methods, including Radau IA-I (A) over bar and Lobatto IIIA-IIIB methods as examples. For any alpha not equal 0, the corresponding methods are symplectic and there exists a value alpha* such that energy is preserved in the numerical solution at each step. The existence of the parameter and the order of the numerical methods are discussed. Some numerical examples are presented to illustrate these results. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 50 条
  • [1] Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems
    Jay, L
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 368 - 387
  • [2] ENERGY-PRESERVING RUNGE-KUTTA METHODS
    Celledoni, Elena
    McLachlan, Robert I.
    McLaren, David I.
    Owren, Brynjulf
    Quispel, G. Reinout W.
    Wright, William M.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (04): : 645 - 649
  • [3] Application of symplectic partitioned Runge-Kutta methods to Hamiltonian problems
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    [J]. ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 417 - 420
  • [4] SYMPLECTIC PARTITIONED RUNGE-KUTTA METHODS
    SUN, G
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1993, 11 (04) : 365 - 372
  • [5] Stochastic symplectic partitioned Runge-Kutta methods for stochastic Hamiltonian systems with multiplicative noise
    Ma, Qiang
    Ding, Xiaohua
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 252 : 520 - 534
  • [6] A class of symplectic partitioned Runge-Kutta methods
    Gan, Siqing
    Shang, Zaijiu
    Sun, Geng
    [J]. APPLIED MATHEMATICS LETTERS, 2013, 26 (09) : 968 - 973
  • [7] A MODIFIED VERSION OF EXPLICIT RUNGE-KUTTA METHODS FOR ENERGY-PRESERVING
    Hu, Guang-Da
    [J]. KYBERNETIKA, 2014, 50 (05) : 838 - 847
  • [8] On multi-symplectic partitioned Runge-Kutta methods for Hamiltonian wave equations
    Li, Qinghong
    Song, Yongzhong
    Wang, Yushun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) : 36 - 43
  • [9] A NOVEL WAY CONSTRUCTING SYMPLECTIC STOCHASTIC PARTITIONED RUNGE-KUTTA METHODS FOR STOCHASTIC HAMILTONIAN SYSTEMS
    Li, Xiuyan
    Ma, Qiang
    Ding, Xiaohua
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (04): : 2070 - 2089
  • [10] Construction of Symplectic Runge-Kutta Methods for Stochastic Hamiltonian Systems
    Wang, Peng
    Hong, Jialin
    Xu, Dongsheng
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (01) : 237 - 270