Collaborating personalized recommender system and content-based recommender system using TextCorpus

被引:0
|
作者
Amara, Srikar [1 ]
Subramanian, R. Raja [1 ]
机构
[1] Kalasalingam Acad Res & Educ, Dept Comp Sci & Engn, Virudunagar, India
关键词
Recommendation; Recommendersystems; NLTK framework; user-profile model; personalized recommender;
D O I
10.1109/icaccs48705.2020.9074360
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recommender systems aim to get the relevant data, based on the user's interests. One of the key problems of the recommender systems is to maintain the dataset and to retrieve the data, which is relevant to the user. A common solution is to track the user's preferences and showing the relevant results, however, it is a complex task in terms of time and space. The user data need to be analyzed and learnt using efficient algorithms. To address this problem, we have proposed a method to format the data in the dataset using POS-taggers using NLTK framework. In this paper, we have proposed a user-profile model which uses this tagging mechanism to provide better recommendations compared to the existing state-of-the-art recommender techniques.
引用
收藏
页码:105 / 109
页数:5
相关论文
共 50 条
  • [1] Using structural knowledge in a Content-Based Recommender System
    de Campos, L. M.
    Fernandez-Luna, J. M.
    Huete, J. F.
    Rueda-Morales, M. A.
    [J]. COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL, 2008, 1 : 871 - 876
  • [2] Content-based recommender system for online stores using expert system
    Walek, Bogdan
    Spackova, Petra
    [J]. 2018 IEEE FIRST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2018, : 164 - 165
  • [3] A content-based recommender system for choosing universities
    Mokarrama, Miftahul Jannat
    Khatun, Sumi
    Arefin, Mohammad Shamsul
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2020, 28 (04) : 2128 - 2142
  • [4] Using affective parameters in a content-based recommender system for images
    Marko Tkalčič
    Urban Burnik
    Andrej Košir
    [J]. User Modeling and User-Adapted Interaction, 2010, 20 : 279 - 311
  • [5] Content-based Fashion Recommender System Using Unsupervised Learning
    Guillermo, Marielet
    Espanola, Jason
    Kerwin Billones, Robert
    Rhay Vicerra, Ryan
    Bandala, Argel
    Sybingco, Edwin
    Dadios, Elmer P.
    Fillone, Alexis
    [J]. 2021 IEEE REGION 10 CONFERENCE (TENCON 2021), 2021, : 29 - 34
  • [6] Using affective parameters in a content-based recommender system for images
    Tkalcic, Marko
    Burnik, Urban
    Kosir, Andrej
    [J]. USER MODELING AND USER-ADAPTED INTERACTION, 2010, 20 (04) : 279 - 311
  • [7] A Multimedia Content Recommender System Using Table of Contents and Content-Based Filtering
    Hariri, Waleed
    Ghauth, Khairil Imran
    Eswaran, C.
    [J]. ADVANCED SCIENCE LETTERS, 2018, 24 (02) : 1119 - 1123
  • [8] Affective Labeling in a Content-Based Recommender System for Images
    Tkalcic, Marko
    Odic, Ante
    Kosir, Andrej
    Tasic, Jurij
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2013, 15 (02) : 391 - 400
  • [9] Content-Based Recommender System Enriched with Wordnet Synsets
    Alharthi, Haifa
    Inkpen, Diana
    [J]. COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING (CICLING 2015), PT II, 2015, 9042 : 295 - 308
  • [10] In-memory, distributed content-based recommender system
    Dooms, Simon
    Audenaert, Pieter
    Fostier, Jan
    De Pessemier, Toon
    Martens, Luc
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2014, 42 (03) : 645 - 669