REALIZABILITY PROBLEM FOR COMMUTING GRAPHS

被引:2
|
作者
Giudici, Michael [1 ]
Kuzma, Bojan [2 ,3 ]
机构
[1] Univ Western Australia, Ctr Math Symmetry & Computat, 35 Stirling Highway, Crawley, WA 6009, Australia
[2] Univ Primorska, Glagoljaska 8, SI-6000 Koper, Slovenia
[3] IMFM, Jadranska 19, SI-1000 Ljubljana, Slovenia
基金
澳大利亚研究理事会;
关键词
finite groups; finite semigroups; commuting graph; classification problem; DIAMETER;
D O I
10.1017/S1446788716000148
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate properties which ensure that a given finite graph is the commuting graph of a group or semigroup. We show that all graphs on at least two vertices such that no vertex is adjacent to all other vertices is the commuting graph of some semigroup. Moreover, we obtain complete classifications of the graphs with an isolated vertex or edge that are the commuting graph of a group and the cycles that are the commuting graph of a centrefree semigroup.
引用
收藏
页码:335 / 355
页数:21
相关论文
共 50 条
  • [1] Realizability of Graphs
    Maria Belk
    Robert Connelly
    [J]. Discrete & Computational Geometry, 2007, 37 : 125 - 137
  • [2] The Realizability Problem for the Values of the Length Function of Quasi-Commuting Matrix Pairs
    Guterman A.E.
    Markova O.V.
    [J]. Journal of Mathematical Sciences, 2016, 216 (6) : 761 - 769
  • [3] REALIZABILITY AND UNIQUENESS IN GRAPHS
    AIGNER, M
    TRIESCH, E
    [J]. DISCRETE MATHEMATICS, 1994, 136 (1-3) : 3 - 20
  • [4] Realizability of graphs as triangle cover contact graphs
    Sultana, Shaheena
    Rahman, Md. Saidur
    [J]. THEORETICAL COMPUTER SCIENCE, 2018, 720 : 24 - 35
  • [5] Realizability and verification of MSC graphs
    Alur, R
    Etessami, K
    Yannakakis, M
    [J]. AUTOMATA LANGUAGES AND PROGRAMMING, PROCEEDING, 2001, 2076 : 797 - 808
  • [6] NOTE ON REALIZABILITY OF DIRECTED GRAPHS
    SESHU, S
    [J]. IRE TRANSACTIONS ON CIRCUIT THEORY, 1962, CT 9 (04): : 412 - &
  • [7] Realizability of graphs in three dimensions
    Belk, Maria
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (02) : 139 - 162
  • [8] On rigidity and realizability of weighted graphs
    Alfakih, AY
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 325 (1-3) : 57 - 70
  • [9] Length realizability for pairs of quasi-commuting matrices
    Guterman, A. E.
    Markova, O., V
    Mehrmann, V
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 568 : 135 - 154
  • [10] GAUSS REALIZABILITY PROBLEM
    MARX, ML
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 140 - &