Rigid Steiner Triple Systems Obtained from Projective Triple Systems

被引:0
|
作者
Grannell, M. J. [1 ]
Knor, M. [2 ]
机构
[1] Open Univ, Dept Math & Stat, Milton Keynes MK7 6AA, Bucks, England
[2] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, Bratislava 81368, Slovakia
关键词
automorphism; Pasch configuration; projective triple system; rigid system; Steiner triple system; trade;
D O I
10.1002/jcd.21357
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It was shown by Babai in 1980 that almost all Steiner triple systems are rigid; that is, their only automorphism is the identity permutation. Those Steiner triple systems with the largest automorphism groups are the projective systems of orders 2n-1. In this paper, we show that each such projective system may be transformed to a rigid Steiner triple system by at most n Pasch trades whenever n4.
引用
收藏
页码:279 / 290
页数:12
相关论文
共 50 条
  • [1] Steiner triple systems and spreading sets in projective spaces
    Nagy, Zoltan Lorant
    Szemeredi, Levente
    JOURNAL OF COMBINATORIAL DESIGNS, 2022, 30 (08) : 549 - 560
  • [3] Embedding Steiner triple systems in hexagon triple systems
    Lindner, C. C.
    Quattrocchi, Gaetano
    Rodger, C. A.
    DISCRETE MATHEMATICS, 2009, 309 (02) : 487 - 490
  • [4] STRUCTURE OF STEINER TRIPLE SYSTEMS DERIVED FROM STEINER QUADRUPLE SYSTEMS
    LINDNER, CC
    COLLOQUIUM MATHEMATICUM, 1975, 34 (01) : 137 - 142
  • [5] The automorphism groups of Steiner triple systems obtained by the Bose construction
    Lovegrove, GJ
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2003, 18 (03) : 159 - 170
  • [6] The Automorphism Groups of Steiner Triple Systems Obtained by the Bose Construction
    G.J. Lovegrove
    Journal of Algebraic Combinatorics, 2003, 18 : 159 - 170
  • [7] Enumerating Steiner triple systems
    Heinlein, Daniel
    Ostergard, Patric R. J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (10) : 479 - 495
  • [8] On colourings of Steiner triple systems
    Forbes, AD
    Grannell, MJ
    Griggs, TS
    DISCRETE MATHEMATICS, 2003, 261 (1-3) : 255 - 276
  • [9] Twin Steiner triple systems
    Grannell, MJ
    Griggs, TS
    Murphy, JP
    DISCRETE MATHEMATICS, 1997, 167 : 341 - 352
  • [10] Threshold for Steiner triple systems
    Sah, Ashwin
    Sawhney, Mehtaab
    Simkin, Michael
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2023, 33 (04) : 1141 - 1172