Numerical methods for solving a two-dimensional variable-order modified diffusion equation

被引:15
|
作者
Chen, Chang-Ming [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
A two-dimensional variable-order modified diffusion equation; The variable-order Riemann-Liouville fractional partial derivative; Convergence; Stability; Solvability; Fourier analysis; ANOMALOUS SUBDIFFUSION EQUATION; TIME FRACTIONAL DIFFUSION; NONLINEAR SOURCE-TERM; FELLER SEMIGROUPS; RANDOM-WALKS; OPERATORS; DIFFERENTIATION; VISCOELASTICITY; TRANSPORT; FIELDS;
D O I
10.1016/j.amc.2013.08.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a two-dimensional variable-order modified diffusion equation is considered. We develop the numerical methods to solve the equation. By Fourier analysis, we discuss the convergence, stability and solvability of the numerical method. The numerical method for improving temporal accuracy is also developed. Moreover, our theoretical analysis results are demonstrated by the numerical example. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:62 / 78
页数:17
相关论文
共 50 条
  • [1] NUMERICAL METHODS FOR SOLVING A TWO-DIMENSIONAL VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION
    Chen, Chang-Ming
    Liu, F.
    Anh, V.
    Turner, I.
    [J]. MATHEMATICS OF COMPUTATION, 2012, 81 (277) : 345 - 366
  • [2] A NEW NUMERICAL METHOD FOR SOLVING TWO-DIMENSIONAL VARIABLE-ORDER ANOMALOUS SUB-DIFFUSION EQUATION
    Jiang, Wei
    Guo, Beibei
    [J]. THERMAL SCIENCE, 2016, 20 : S701 - S710
  • [3] On numerical solution of two-dimensional variable-order fractional diffusion equation arising in transport phenomena
    Salama, Fouad Mohammad
    Fairag, Faisal
    [J]. AIMS MATHEMATICS, 2024, 9 (01): : 340 - 370
  • [4] A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation
    Tayebi, A.
    Shekari, Y.
    Heydari, M. H.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 340 : 655 - 669
  • [5] Two-Dimensional Legendre Wavelets for Solving Variable-Order Fractional Nonlinear Advection-Diffusion Equation with Variable Coefficients
    Hosseininia, M.
    Heydari, M. H.
    Avazzadeh, Z.
    Ghaini, F. M. Maalek
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (7-8) : 793 - 802
  • [6] Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation
    A. H. Bhrawy
    M. A. Zaky
    [J]. Nonlinear Dynamics, 2015, 80 : 101 - 116
  • [7] Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation
    Bhrawy, A. H.
    Zaky, M. A.
    [J]. NONLINEAR DYNAMICS, 2015, 80 (1-2) : 101 - 116
  • [8] Correction to: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation
    M. A. Zaky
    [J]. Nonlinear Dynamics, 2018, 94 : 757 - 757
  • [9] A stable RBF-FD method for solving two-dimensional variable-order time fractional advection-diffusion equation
    Biglari, Marzieh
    Soheili, Ali R.
    Toutounian, Faezeh
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 152 : 582 - 597
  • [10] Numerical treatment of a two-dimensional variable-order fractional nonlinear reaction-diffusion model
    Liu, Fawang
    Zhuang, Pinghui
    Turner, Ian
    Anh, Vo
    Burrage, Kevin
    [J]. 2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,