Pattern recognition in airflow recordings to assist in the sleep apnoea-hypopnoea syndrome diagnosis

被引:28
|
作者
Gutierrez-Tobal, Gonzalo C. [1 ]
Alvarez, Daniel [1 ]
Victor Marcos, J.
del Campo, Felix [2 ,3 ]
Hornero, Roberto
机构
[1] Univ Valladolid, ETSI Telecomuni, Biomed Engn Grp, E-47011 Valladolid, Spain
[2] Hosp Univ Rio Hortega, Serv Neumol, Valladolid 47012, Spain
[3] Univ Valladolid, Fac Med, E-47005 Valladolid, Spain
关键词
Sleep apnoea-hypopnoea syndrome; Airflow; Respiratory rate variability; AHI estimation; Pattern recognition; HEART-RATE-VARIABILITY; FEATURE-SELECTION; EVENTS; COMPLEXITY; CHANNEL; RELEVANCE; ACCURACY; PRESSURE; VALIDITY; SYSTEM;
D O I
10.1007/s11517-013-1109-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper aims at detecting sleep apnoea-hypopnoea syndrome (SAHS) from single-channel airflow (AF) recordings. The study involves 148 subjects. Our proposal is based on estimating the apnoea-hypopnoea index (AHI) after global analysis of AF, including the investigation of respiratory rate variability (RRV). We exhaustively characterize both AF and RRV by extracting spectral, nonlinear, and statistical features. Then, the fast correlation-based filter is used to select those relevant and non-redundant. Multiple linear regression, multi-layer perceptron (MLP), and radial basis functions are fed with the features to estimate AHI. A conventional approach, based on scoring apnoeas and hypopnoeas, is also assessed for comparison purposes. An MLP model trained with AF and RRV selected features achieved the highest agreement with the true AHI (intra-class correlation coefficient = 0.849). It also showed the highest diagnostic ability, reaching 92.5 % sensitivity, 89.5 % specificity and 91.5 % accuracy. This suggests that AF and RRV can complement each other to estimate AHI and help in SAHS diagnosis.
引用
收藏
页码:1367 / 1380
页数:14
相关论文
共 50 条
  • [1] Pattern recognition in airflow recordings to assist in the sleep apnoea–hypopnoea syndrome diagnosis
    Gonzalo C. Gutiérrez-Tobal
    Daniel Álvarez
    J. Víctor Marcos
    Félix del Campo
    Roberto Hornero
    [J]. Medical & Biological Engineering & Computing, 2013, 51 : 1367 - 1380
  • [2] Linear and nonlinear analysis of airflow recordings to help in sleep apnoea-hypopnoea syndrome diagnosis
    Gutierrez-Tobal, G. C.
    Hornero, R.
    Alvarez, D.
    Marcos, J. V.
    del Campo, F.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2012, 33 (07) : 1261 - 1275
  • [3] Irregularity and Variability Analysis of Airflow Recordings to Facilitate the Diagnosis of Paediatric Sleep Apnoea-Hypopnoea Syndrome
    Barroso-Garcia, Veronica
    Cesar Gutierrez-Tobal, Gonzalo
    Kheirandish-Gozal, Leila
    Alvarez, Daniel
    Vaquerizo-Villar, Fernando
    Crespo, Andrea
    del Campo, Felix
    Gozal, David
    Hornero, Roberto
    [J]. ENTROPY, 2017, 19 (09)
  • [4] Sleep apnoea-hypopnoea syndrome
    Oliva Ramos, Alicia
    Llanos Flores, Milagros
    de Miguel Diez, Javier
    [J]. MEDICINA CLINICA, 2016, 147 (01): : 22 - 27
  • [5] Obstructive sleep apnoea-hypopnoea syndrome
    Read, Nicola
    Jennings, Callum
    Hare, Alanna
    [J]. EMERGING TOPICS IN LIFE SCIENCES, 2023, 7 (05) : 467 - 476
  • [6] Detrended fluctuation analysis of the oximetry signal to assist in paediatric sleep apnoea-hypopnoea syndrome diagnosis
    Vaquerizo-Villar, Fernando
    Alvarez, Daniel
    Kheirandish-Gozal, Leila
    Gutierrez-Tobal, Gonzalo C.
    Barroso-Garcia, Veronica
    Crespo, Andrea
    del Campo, Felix
    Gozal, David
    Hornero, Roberto
    [J]. PHYSIOLOGICAL MEASUREMENT, 2018, 39 (11)
  • [7] Obstructive sleep apnoea-hypopnoea syndrome and arterial hypertension
    Van Meerhaeghe, A
    Moscariello, A
    Velkeniers, B
    [J]. ACTA CARDIOLOGICA, 2006, 61 (01) : 95 - 102
  • [8] Obstructive sleep apnoea-hypopnoea syndrome: state of the art
    Tondo, Pasquale
    Fanfulla, Francesco
    Sabato, Roberto
    Scioscia, Giulia
    Foschino Barbaro, Maria Pia
    Lacedonia, Donato
    [J]. MINERVA MEDICA, 2023, 114 (01) : 74 - 89
  • [9] Sleep architecture and the apnoea-hypopnoea index in children with obstructive-sleep apnoea syndrome
    Matsumoto, E.
    Tanaka, E.
    Tabe, H.
    Wakisaka, N.
    Nakata, Y.
    Ueda, H.
    Hori, T.
    Abe, T.
    Tanne, K.
    [J]. JOURNAL OF ORAL REHABILITATION, 2007, 34 (02) : 112 - 120
  • [10] Transoral Robotic Surgery for Obstructive Sleep Apnoea-Hypopnoea Syndrome
    Vauterin, Tom
    Garas, George
    Arora, Asit
    [J]. ORL-JOURNAL FOR OTO-RHINO-LARYNGOLOGY HEAD AND NECK SURGERY, 2018, 80 (3-4): : 134 - 147