Unsupervised Anomaly Detection Using Optimal Transport for Predictive Maintenance

被引:2
|
作者
Alaoui-Belghiti, Amina [1 ,2 ]
Chevallier, Sylvain [2 ,3 ]
Monacelli, Eric [2 ,3 ]
机构
[1] Nexeya, Massy, France
[2] Univ Paris Saclay, UVSQ, Versailles, France
[3] Univ Paris Saclay, LISV, Velizy Villacoublay, France
关键词
Predictive maintenance; Optimal transport; Anomaly detection; Unsupervised learning;
D O I
10.1007/978-3-030-30490-4_54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection is of crucial importance in industrial environment, especially in the context of predictive maintenance. As it is very costly to add an extra monitoring layer on production machines, non-invasive solutions are favored to watch for precursory clue indicating the possible need for a maintenance operation. Those clues are to be detected in evolving and highly variable working environment, calling for online and unsupervised methods. This contribution proposes a framework grounded in optimal transport, for the specific characterization of a system and the automatic detection of abnormal events. This method is evaluated on acoustic dataset and demonstrate the superiority of metrics derived from optimal transport on the Euclidean ones. The proposed method is shown to outperform one-class SVM on real datasets, which is the state-of-the-art method for anomaly detection.
引用
收藏
页码:686 / 697
页数:12
相关论文
共 50 条
  • [1] Anomaly detection in predictive maintenance: A new evaluation framework for temporal unsupervised anomaly detection algorithms
    Carrasco, Jacinto
    López, David
    Aguilera-Martos, Ignacio
    García-Gil, Diego
    Markova, Irina
    García-Barzana, Marta
    Arias-Rodil, Manuel
    Luengo, Julián
    Herrera, Francisco
    [J]. Neurocomputing, 2021, 462 : 440 - 452
  • [2] Anomaly detection in predictive maintenance: A new evaluation framework for temporal unsupervised anomaly detection algorithms
    Carrasco, Jacinto
    Lopez, David
    Aguilera-Martos, Ignacio
    Garcia-Gil, Diego
    Markova, Irina
    Garcia-Barzana, Marta
    Arias-Rodil, Manuel
    Luengo, Julian
    Herrera, Francisco
    [J]. NEUROCOMPUTING, 2021, 462 : 440 - 452
  • [3] MIAD: A Maintenance Inspection Dataset for Unsupervised Anomaly Detection
    Bao, Tianpeng
    Chen, Jiadong
    Li, Wei
    Wang, Xiang
    Fei, Jingjing
    Wu, Liwei
    Zhao, Rui
    Zheng, Ye
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 993 - 1002
  • [4] Kalman Filter for Predictive Maintenance and Anomaly Detection
    Hovsepyan, Sirarpi
    Papadoudis, Jan
    Mercorelli, Paolo
    [J]. 2021 22ND INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2021, : 96 - 101
  • [5] Anomaly Detection with Convolutional Autoencoder for Predictive Maintenance
    Tian, Ruiqi
    Liboni, Luisa
    Capretz, Miriam
    [J]. 2022 9TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2022, : 241 - 245
  • [6] Verifying Autoencoders for Anomaly Detection in Predictive Maintenance
    Guidotti, Dario
    Pandolfo, Laura
    Pulina, Luca
    [J]. ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, IEA-AIE 2024, 2024, 14748 : 188 - 199
  • [7] Anomaly detection and predictive maintenance for photovoltaic systems
    De Benedetti, Massimiliano
    Leonardi, Fabio
    Messina, Fabrizio
    Santoro, Corrado
    Vasilakos, Athanasios
    [J]. NEUROCOMPUTING, 2018, 310 : 59 - 68
  • [8] A novel unsupervised method for anomaly detection in time series based on statistical features for industrial predictive maintenance
    da Silva Arantes, Jesimar
    da Silva Arantes, Marcio
    Frohlich, Herberth Birck
    Siret, Laure
    Bonnard, Renan
    [J]. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2021, 12 (04) : 383 - 404
  • [9] A novel unsupervised method for anomaly detection in time series based on statistical features for industrial predictive maintenance
    Jesimar da Silva Arantes
    Márcio da Silva Arantes
    Herberth Birck Fröhlich
    Laure Siret
    Renan Bonnard
    [J]. International Journal of Data Science and Analytics, 2021, 12 : 383 - 404
  • [10] Deep Learning Based Anomaly Detection for Predictive Maintenance
    Hilliger, B.
    Rebahi, Y.
    Lepadatu, B.A.
    Cardoso, A.
    [J]. Automation, Robotics and Communications for Industry 4.0/5.0, 2023, 2023 : 56 - 62