Effect of Ce0.8Sm0.2O1.9 interlayer on the electrochemical performance of La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O1.9 composite anodes for intermediate-temperature solid oxide fuel cells

被引:15
|
作者
He, Shoucheng [1 ]
Chen, Han [1 ]
Li, Ruifeng [1 ]
Ge, Lin [1 ]
Guo, Lucun [1 ]
机构
[1] Nanjing Univ Technol, Coll Mat Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China
关键词
Solid oxide fuel cell; Composite anode; Interlayer; Electrochemical performance; DIRECT OXIDATION; SOFC ANODE; METHANE; CERIA;
D O I
10.1016/j.jpowsour.2013.12.071
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Composite anodes of La0.75Sr0.25Cr0.5Mn0.5O3-delta-Ce0.8Sm0.2O1.9 (LSCM-SDC) were prepared and investigated as anode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs) with YSZ electrolyte. Results showed that the addition of SDC significantly enhanced the electrochemical performance of LSCM anode. The anode containing 40 wt.% SDC demonstrated optimal performance. The polarization resistance and anodic overpotential (at a current density of 0.05 A cm(-2)) of this anode were 0.95 Omega cm(2) and 0.12 V in H-2 at 800 degrees C, respectively, whereas those of pure LSCM anode were 3.66 Omega cm(2) and 0.38 V, respectively. The electrochemical performance of the LSCM-40SDC composite anode was further improved when a thin SDC interlayer was coated between the anode and YSZ electrolyte. The resulting polarization resistance and anodic overpotential with the SDC interlayer were 0.30 Omega cm(2) and 0.035 V in H-2 at 800 degrees C, demonstrating a reduction by factors of 3.2 and 3.4, respectively. The impedance data displayed that the coated SDC interlayer mainly affected the low frequency electrode process, indicating that the SDC interlayer played an important role in the promotion of the dissociation and diffusion processes of H-2 oxidation reaction. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:187 / 192
页数:6
相关论文
共 50 条
  • [1] La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O1.9 as composite electrodes in symmetric solid electrolyte cells for electrochemical removal of nitric oxide
    Li, Wenjie
    Liu, Xiaozhen
    Yu, Han
    Zhang, Shuyuan
    Yu, Hongbing
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 264
  • [2] La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O1.9 as composite electrodes in symmetric solid electrolyte cells for electrochemical removal of nitric oxide
    Li, Wenjie
    Liu, Xiaozhen
    Yu, Han
    Zhang, Shuyuan
    Yu, Hongbing
    [J]. Applied Catalysis B: Environmental, 2020, 264
  • [3] Optimization of La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O1.9 compositionally graded anode functional layer
    He, Shoucheng
    Dai, Hailu
    Cai, Guifan
    Chen, Han
    Guo, Lucun
    [J]. ELECTROCHIMICA ACTA, 2015, 152 : 155 - 160
  • [4] Sintering of Ce0.8Sm0.2O1.9
    高瑞峰
    毛宗强
    [J]. Journal of Rare Earths, 2007, (03) : 364 - 367
  • [5] Sintering of Ce0.8Sm0.2O1.9
    Gao Ruifeng
    Mao Zongqiang
    [J]. JOURNAL OF RARE EARTHS, 2007, 25 (03) : 364 - 367
  • [6] Electrochemical characterization of gradient Sm0.5Sr0.5CoO3-δ cathodes on Ce0.8Sm0.2O1.9 electrolytes for solid oxide fuel cells
    Li, Chien-Hung
    Hu, Shao-Hua
    Tay, Kok-Wan
    Fu, Yen-Pei
    [J]. CERAMICS INTERNATIONAL, 2012, 38 (02) : 1557 - 1562
  • [7] Electrochemical performance of La0.9Sr0.1Co0.8Ni0.2O3-δ-Ce0.8Sm0.2O1.9 composite cathode for solid oxide fuel cells
    Fu, Yen-Pei
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (09) : 5574 - 5580
  • [8] Comparison of the Electrochemical Properties of Infiltrated and Functionally Gradient Sm0.5Sr0.5CoO3-δ-Ce0.8Sm0.2O1.9 Composite Cathodes for Solid Oxide Fuel Cells
    Fu, Yen-Pei
    Li, Chien-Hung
    Hu, Shao-Hua
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (05) : B629 - B634
  • [9] Properties and electrochemical performance of La0.75Sr0.25Cr0.5Mn0.5O3-δ-La0.2Ce0.8O2-δ composite anodes for solid oxide fuel cells
    Rath, Manas K.
    Choi, Byung-Hyun
    Lee, Ki-Tae
    [J]. JOURNAL OF POWER SOURCES, 2012, 213 : 55 - 62
  • [10] Electrochemical and thermal properties of SmBa0.5Sr0.5CO2O5+δ cathode impregnated with Ce0.8Sm0.2O1.9 nanoparticles for intermediate-temperature solid oxide fuel cells
    Subardi, Adi
    Fu, Yen-Pei
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (38) : 24338 - 24346