Machine Learning and Prediction of All-Cause Mortality in COPD

被引:72
|
作者
Moll, Matthew [1 ,2 ]
Qiao, Dandi [1 ]
Regan, Elizabeth A. [4 ]
Hunninghake, Gary M. [2 ]
Make, Barry J. [5 ]
Tal-Singer, Ruth [6 ]
McGeachie, Michael J. [1 ]
Castaldi, Peter J. [1 ]
Estepar, Raul San Jose [2 ,3 ]
Washko, George R. [2 ,3 ]
Wells, James M. [7 ]
LaFon, David [7 ]
Strand, Matthew [5 ]
Bowler, Russell P. [4 ,5 ]
Han, MeiLan K. [8 ]
Vestbo, Jorgen [9 ,10 ]
Celli, Bartolome [2 ]
Calverley, Peter [11 ]
Crapo, James [5 ]
Silverman, Edwin K. [1 ,2 ]
Hobbs, Brian D. [1 ,2 ]
Cho, Michael H. [1 ,2 ]
机构
[1] Brigham & Womens Hosp, Channing Div Network Med, Boston, MA USA
[2] Brigham & Womens Hosp, Div Pulm & Crit Care Med, Boston, MA USA
[3] Brigham & Womens Hosp, Appl Chest Imaging Lab, Boston, MA USA
[4] Univ Colorado, Div Pulm & Crit Care Med, Denver, CO USA
[5] Natl Jewish Hlth, Crit Care Med, Denver, CO USA
[6] GlaxoSmithKline Res & Dev Ltd, Collegeville, PA USA
[7] Univ Alabama Birmingham, Div Pulm Allergy & Crit Care Med, Birmingham, AL USA
[8] Univ Michigan, Div Pulm & Crit Care Med, Hlth Syst, Ann Arbor, MI USA
[9] Univ Manchester, Manchester Acad Hlth Sci Ctr, Div Infect Immun & Resp Med, Manchester, Lancs, England
[10] Manchester Univ NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Div Infect Immun & Resp Med, Manchester, Lancs, England
[11] Univ Liverpool, Dept Med, Liverpool, Merseyside, England
基金
美国国家卫生研究院;
关键词
COPD; machine learning; mortality; prediction; random survival forest; OBSTRUCTIVE PULMONARY-DISEASE; LUNG-TRANSPLANT CANDIDATES; BODE INDEX; SEVERE EXACERBATIONS; INTERNATIONAL-SOCIETY; PROGNOSTIC ASSESSMENT; SURVIVAL ANALYSIS; VALIDATION; HYPERTENSION; EMPHYSEMA;
D O I
10.1016/j.chest.2020.02.079
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BACKGROUND: COPD is a leading cause of mortality. RESEARCH QUESTION: We hypothesized that applying machine learning to clinical and quantitative CT imaging features would improve mortality prediction in COPD. STUDY DESIGN AND METHODS: We selected 30 clinical, spirometric, and imaging features as inputs for a random survival forest. We used top features in a Cox regression to create a machine learning mortality prediction (MLMP) in COPD model and also assessed the performance of other statistical and machine learning models. We trained the models in subjects with moderate to severe COPD from a subset of subjects in Genetic Epidemiology of COPD (COPDGene) and tested prediction performance in the remainder of individuals with moderate to severe COPD in COPDGene and Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE). We compared our model with the BMI, airflow obstruction, dyspnea, exercise capacity (BODE) index; BODE modifications; and the age, dyspnea, and airflow obstruction index. RESULTS: We included 2,632 participants from COPDGene and 1,268 participants from ECLIPSE. The top predictors of mortality were 6-min walk distance, FEV1 % predicted, and age. The top imaging predictor was pulmonary artery-to-aorta ratio. The MLMP-COPD model resulted in a C index $ 0.7 in both COPDGene and ECLIPSE (6.4and 7.2-year median follow-ups, respectively), significantly better than all tested mortality indexes (P < .05). The MLMP-COPD model had fewer predictors but similar performance to that of other models. The group with the highest BODE scores (7-10) had 64% mortality, whereas the highest mortality group defined by the MLMP-COPD model had 77% mortality (P 1/4 .012). INTERPRETATION: An MLMP-COPD model outperformed four existing models for predicting all-cause mortality across two COPD cohorts. Performance of machine learning was similar to that of traditional statistical methods. The model is available online at: https://cdnm. shinyapps.io/cgmortalityapp/.
引用
收藏
页码:952 / 964
页数:13
相关论文
共 50 条
  • [1] Interpretable machine learning prediction of all-cause mortality
    Qiu, Wei
    Chen, Hugh
    Dincer, Ayse Berceste
    Lundberg, Scott
    Kaeberlein, Matt
    Lee, Su-In
    [J]. COMMUNICATIONS MEDICINE, 2022, 2 (01):
  • [2] Interpretable machine learning prediction of all-cause mortality
    Wei Qiu
    Hugh Chen
    Ayse Berceste Dincer
    Scott Lundberg
    Matt Kaeberlein
    Su-In Lee
    [J]. Communications Medicine, 2
  • [3] Machine Learning and Prediction of All-Cause Mortality in COPD (vol 158, pg 952, 2020)
    Moll, Matthew
    Qiao, Dandi
    Regan, Elizabeth A.
    Hunninghake, Gary M.
    Make, Barry J.
    Tal-Singer, Ruth
    McGeachie, Michael J.
    Castaldi, Peter J.
    Estepar, Raul San Jose
    Washko, George R.
    Wells, James M.
    LaFon, David
    Strand, Matthew
    Bowler, Russell P.
    Han, MeiLan K.
    Vestbo, Jorgen
    Celli, Bartolome
    Calverley, Peter
    Crapo, James
    Silverman, Edwin K.
    Hobbs, Brian D.
    Cho, Michael H.
    [J]. CHEST, 2021, 159 (05) : 2123 - 2128
  • [4] Prediction of all-cause mortality in cardiovascular patients by using machine learning models
    Tsarapatsani, K.
    Pezoulas, V.
    Sakellarios, A.
    Tsakanikas, V.
    Marz, W.
    Kleber, M.
    Michalis, L.
    Fotiadis, D.
    [J]. EUROPEAN HEART JOURNAL, 2022, 43 : 1185 - 1185
  • [5] Machine learning for prediction of all-cause mortality after transcatheter aortic valve implantation
    Kwiecinski, Jacek
    Dabrowski, Maciej
    Nombela-Franco, Luis
    Grodecki, Kajetan
    Pieszko, Konrad
    Chmielak, Zbigniew
    Pylko, Anna
    Hennessey, Breda
    Kalinczuk, Lukasz
    Tirado-Conte, Gabriela
    Rymuza, Bartosz
    Kochman, Janusz
    Opolski, Maksymilian P.
    Huczek, Zenon
    Dweck, Marc R.
    Dey, Damini
    Jimenez-Quevedo, Pilar
    Slomka, Piotr
    Witkowski, Adam
    [J]. EUROPEAN HEART JOURNAL-QUALITY OF CARE AND CLINICAL OUTCOMES, 2023, 9 (08) : 768 - 777
  • [6] MACHINE LEARNING FOR PREDICTION OF ALL-CAUSE MORTALITY AFTER TRANSCATHETER AORTIC VALVE REPLACEMENT
    Kwiecinski, Jacek
    Dabrowski, Maciej
    Grodecki, Kajetan
    Pylko, Anna
    Kalinczuk, Lukasz
    Rymuza, Bartosz
    Kochman, Janusz
    Chmielak, Zbigniew
    Huczek, Zenon
    Slomka, Piotr
    Witkowski, Adam
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 648 - 648
  • [7] Interpretable machine learning models for the prediction of all-cause mortality and time to death in hemodialysis patients
    Chen, Minjie
    Zeng, Youbing
    Liu, Mengting
    Li, Zhenghui
    Wu, Jiazhen
    Tian, Xuan
    Wang, Yunuo
    Xu, Yuanwen
    [J]. THERAPEUTIC APHERESIS AND DIALYSIS, 2024,
  • [8] PREDICTORS OF ALL-CAUSE MORTALITY IN THE SPRINT TRIAL IDENTIFIED BY MACHINE LEARNING
    Gani, Nuha
    Dey, Amit
    Xin, Victoria
    Wang, Runqiu
    Shalhoub, Ruba
    Wu, Colin
    Xin, Tian
    Almario, Eileen Navarro
    Patel, Tejas
    Fleg, Jerome
    Kettermann, Anna
    Csako, Gyorgy
    Sopko, George
    Sviglin, Helena
    Cooper, Lawton
    Hoque, Laboni
    Dandi, Gauri
    Chowdhury, Iffat
    Burkhart, Keith
    Calis, Karim
    Szarfman, Ana
    Mehta, Nehal
    Pucino, Frank
    Rosenberg, Yves
    Hasan, Ahmed
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (09) : 1891 - 1891
  • [9] Prediction of all-cause mortality for chronic kidney disease patients using four models of machine learning
    Tran, Nu Thuy Dung
    Balezeaux, Margaux
    Granal, Maelys
    Fouque, Denis
    Ducher, Michel
    Fauvel, Jean-Pierre
    [J]. NEPHROLOGY DIALYSIS TRANSPLANTATION, 2023, 38 (07) : 1691 - 1699
  • [10] Prediction of All-cause Mortality with Sepsis-associated Encephalopathy in the ICU Based on Interpretable Machine Learning
    Lu, Xiao
    Zhu, Jiang
    Gui, Jiahui
    Li, Qin
    [J]. PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 298 - 302