From spiking neurons to dynamic perceptrons

被引:0
|
作者
Palmieri, F [1 ]
Luongo, A [1 ]
Moiseff, A [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Ingn Elettronica & Telecomunicazioni, I-80125 Naples, Italy
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper begins a systematic validation for a simple and reliable artificial neural network model that can be directly related to the main behaviour of biological neural networks. The sigmoid-plus-linear filter appears to be a promising candidate if the sigmoidal function is calculated in reference to the pulse generation refractory effects. We directly compare a classical spiking neuron model with a scheme based on a sigmoidal function plus a linear filter. The filter is computed as the best least squares fit to the output of the spiking model. The results seem to confirm that FIR and IIR neural networks may be able to represent the essence of the signal processing performed by biological neurons.
引用
收藏
页码:290 / 295
页数:6
相关论文
共 50 条
  • [1] Spiking perceptrons
    Rowcliffe, Phill
    Feng, Jianfeng
    Buxton, Hilary
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (03): : 803 - 807
  • [2] Second order spiking perceptrons
    Xuyan Xiang
    Yingchun Deng
    Xiangqun Yang
    [J]. Soft Computing, 2009, 13 : 1219 - 1230
  • [3] Second order spiking perceptrons
    Xiang, Xuyan
    Deng, Yingchun
    Yang, Xiangqun
    [J]. SOFT COMPUTING, 2009, 13 (12) : 1219 - 1230
  • [4] The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields
    Deco, Gustavo
    Jirsa, Viktor K.
    Robinson, Peter A.
    Breakspear, Michael
    Friston, Karl J.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (08)
  • [5] Dynamic cooperation and competition in a network of spiking neurons
    Trappenberg, T
    [J]. ICONIP'98: THE FIFTH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING JOINTLY WITH JNNS'98: THE 1998 ANNUAL CONFERENCE OF THE JAPANESE NEURAL NETWORK SOCIETY - PROCEEDINGS, VOLS 1-3, 1998, : 1299 - 1302
  • [6] Silicon Modeling of Spiking Neurons With Diverse Dynamic Behaviors
    Ni, Shenglan
    Chen, Houpeng
    Li, Xi
    Lei, Yu
    Wang, Qian
    Lv, Yi
    Zhang, Guangming
    Song, Sannian
    Song, Zhitang
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (07) : 2199 - 2212
  • [7] Dynamic Control of Synchronous Activity in Networks of Spiking Neurons
    Hutt, Axel
    Mierau, Andreas
    Lefebvre, Jeremie
    [J]. PLOS ONE, 2016, 11 (09):
  • [8] Dynamic Cluster Formation using Populations of Spiking Neurons
    Belatreche, Ammar
    Paul, Rakesh
    [J]. 2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [9] Reconstruction of hand movement trajectories from a dynamic ensemble of spiking motor cortical neurons
    Eden, UT
    Truccolo, W
    Fellows, MR
    Donoghue, JP
    Brown, EN
    [J]. PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 4017 - 4020
  • [10] Unsupervised Spiking Neural Network with Dynamic Learning of Inhibitory Neurons
    Yang, Geunbo
    Lee, Wongyu
    Seo, Youjung
    Lee, Choongseop
    Seok, Woojoon
    Park, Jongkil
    Sim, Donggyu
    Park, Cheolsoo
    [J]. SENSORS, 2023, 23 (16)