Magmatic PGE Sulphide Mineralization in Clinopyroxenite from the Platreef, Bushveld Complex, South Africa

被引:4
|
作者
Klemd, Reiner [1 ]
Beinlich, Andreas [2 ]
Kern, Matti [1 ]
Junge, Malte [3 ]
Martin, Laure [4 ]
Regelous, Marcel [1 ]
Schouwstra, Robert [5 ,6 ]
机构
[1] Univ Erlangen Nurnberg, GeoZentrum Nordbayern, Schlossgarten 5a, D-91054 Erlangen, Germany
[2] Univ Bergen, Dept Earth Sci, Allegaten 41, N-5007 Bergen, Norway
[3] Univ Freiburg, Inst Geo & Umweltwissensch Mineral Petrol, Alberstr 23b, D-79104 Freiburg, Germany
[4] Univ Western Australia, Ctr Microscopy Characterizat & Anal CMCA, Verdun St, Perth, WA 6009, Australia
[5] Univ Cape Town, Dept Chem Engn, Minerals Met Initiat, ZA-7103 Rondebosch, South Africa
[6] Univ Free State, Dept Geol, ZA-9301 Bloemfontein, South Africa
关键词
Bushveld Complex; Platreef; clinopyroxenite; fluid-rock interaction; metasomatism; PLATINUM-GROUP ELEMENT; BASE-METAL SULFIDES; FLUID-ROCK INTERACTION; NORTHERN LIMB; MERENSKY REEF; LOWER ZONE; CRUSTAL CONTAMINATION; GROUP MINERALS; ORE-DEPOSITS; LOBE;
D O I
10.3390/min10060570
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Platreef, at the base of the northern limb of the Bushveld Complex in South Africa, hosts platinum-group element (PGE) mineralization in association with base-metal sulphides (BMS) and platinum-group minerals (PGM). However, whilst a magmatic origin of the stratiform mineralization of the upper Platreef has been widely confirmed, the processes responsible for the PGE and BMS mineralization and metasomatism of the host rocks in the Platreef are still under discussion. In order to contribute to the present discussion, we present an integrated petrographical, mineral-chemical, whole-rock trace- and major-element, sulphur- and neodymium-isotope, study of Platreef footwall clinopyroxenite drill core samples from Overysel, which is located in the northern sector of the northern Bushveld limb. A metasomatic transformation of magmatic pyroxenite units to non-magmatic clinopyroxenite is in accordance with the petrography and whole-rock chemical analysis. The whole-rock data display lower SiO2, FeO, Na2O and Cr (<1700 ppm), and higher CaO, concentrations in the here-studied footwall Platreef clinopyroxenite samples than primary magmatic Platreef pyroxenite and norite. The presence of capped globular sulphides in some samples, which display differentiation into pyrrhotite and pentlandite in the lower, and chalcopyrite in the upper part, is attributed to the fractional crystallization of a sulphide liquid, and a downward transport of the blebs. In situ sulphur (V-CDT) isotope BMS data show isotopic signatures (delta S-34 = 0.9 to 3.1 parts per thousand;Delta S-33 = 0.09 to 0.32 parts per thousand) close to or within the pristine magmatic range. Elevated (non-zero)Delta S-33 values are common for Bushveld magmas, indicating contamination by older, presumably crustal sulphur in an early stage chamber, whereas magmatic delta S-34 values suggest the absence of local crustal contamination during emplacement. This is in accordance with the epsilon Nd (2.06 Ga) (chondritic uniform reservoir (CHUR)) values, of -6.16 to -6.94, which are similar to those of the magmatic pyroxenite and norite of the Main Zone and the Platreef in the northern sector of the northern Bushveld limb. Base-metal sulphide textures and S-Se-ratios give evidence for a secondary S-loss during late- to post-magmatic hydrothermal alteration. The textural evidence, as well as the bulk S/Se ratios and sulphide S isotopes studies, suggest that the mineralization in both the less and the pervasively hydrothermally altered clinopyroxenite samples of Overysel are of magmatic origin. This is further supported by the PPGE (Rh, Pt, Pd) concentrations in the BMS and mass-balance calculations, in both of which large proportions of the whole-rock Pd and Rh are hosted by pentlandite, whereas Pt and the IPGE (Os, Ir, Ru) were interpreted to mainly occur in discrete PGM. However, the presence of pentlandite with variable PGE concentrations on the thin section scale may be related to variations in the S content, already at S-saturation during magmatic formation, and/or post-solidification mobilization and redistribution.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条