Learning the Relevant Percepts of Modular Hierarchical Bayesian Driver Models Using a Bayesian Information Criterion

被引:0
|
作者
Eilers, Mark [1 ]
Moebus, Claus [1 ]
机构
[1] CvO Univ, OFFIS Inst Informat Technol, Oldenburg, Germany
来源
DIGITAL HUMAN MODELING | 2011年 / 6777卷
关键词
Probabilistic Driver model; Bayesian Autonomous Driver model; Mixture-of-Behavior model; Bayesian Real-Time-Control; Machine-Learning; Bayesian Information Criterion; Hierarchical Bayesian Models;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modeling drivers' behavior is essential for the rapid prototyping of error-compensating assistance systems. Various authors proposed control-theoretic and production-system models. Based on psychological studies various perceptual measures (angles, distances, time-to-x-measures) have been proposed for such models. These proposals are partly contradictory and depend on special experimental settings. A general computational vision theory of driving behavior is still pending. We propose the selection of drivers' percepts according to their statistical relevance. In this paper we present a new machine-learning method based on a variant of the Bayesian Information Criterion (BIC) using a parent-child-monitor to obtain minimal sets of percepts which are relevant for drivers' actions in arbitrary scenarios or maneuvers.
引用
收藏
页码:463 / 472
页数:10
相关论文
共 50 条
  • [1] Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models
    Ando, Tomohiro
    [J]. BIOMETRIKA, 2007, 94 (02) : 443 - 458
  • [2] Criterion constrained Bayesian hierarchical models
    Qingying Zong
    Jonathan R. Bradley
    [J]. TEST, 2023, 32 : 294 - 320
  • [3] Criterion constrained Bayesian hierarchical models
    Zong, Qingying
    Bradley, Jonathan R.
    [J]. TEST, 2023, 32 (01) : 294 - 320
  • [4] Selecting velocity models using Bayesian Information Criterion
    Danek, Tomasz
    Gierlach, Bartosz
    Kaderali, Ayiaz
    Slawinski, Michael A.
    Stanoev, Theodore
    [J]. GEOPHYSICAL PROSPECTING, 2023, 71 (05) : 811 - 815
  • [5] A Bayesian information criterion for singular models
    Drton, Mathias
    Plummer, Martyn
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (02) : 323 - 380
  • [6] Assessing local model adequacy in Bayesian hierarchical models using the partitioned deviance information criterion
    Wheeler, David C.
    Hickson, DeMarc A.
    Waller, Lance A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (06) : 1657 - 1671
  • [7] Optimal models of prosodic prominence using the Bayesian information criterion
    Mahrt, Tim
    Huang, Jui-Ting
    Mo, Yoonsook
    Fleck, Margaret
    Hasegawa-Johnson, Mark
    Cole, Jennifer
    [J]. 12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 2048 - +
  • [8] Hierarchical Bayesian Models of Subtask Learning
    Anglim, Jeromy
    Wynton, Sarah K. A.
    [J]. JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION, 2015, 41 (04) : 957 - 974
  • [9] Learning overhypotheses with hierarchical Bayesian models
    Kemp, Charles
    Perfors, Amy
    Tenenbaum, Joshua B.
    [J]. DEVELOPMENTAL SCIENCE, 2007, 10 (03) : 307 - 321
  • [10] Bayesian information criterion for censored survival models
    Volinsky, CT
    Raftery, AE
    [J]. BIOMETRICS, 2000, 56 (01) : 256 - 262