Input-Output Robustness for Discrete Systems

被引:0
|
作者
Tabuada, Paulo [1 ]
Balkan, Ayca [1 ]
Caliskan, Sina Y. [1 ]
Shoukry, Yasser [1 ]
Majumdar, Rupak [2 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
[2] Max Planck Inst Software Syst, Kaiserslautern, Germany
关键词
Robustness; stability; discrete systems; automata; STABILITY;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Robustness is the property that a system only exhibits small deviations from the nominal behavior upon the occurrence of small disturbances. While the importance of robustness in engineering design is well accepted, it is less clear how to verify and design discrete systems for robustness. We present a theory of input-output robustness for discrete systems inspired by existing notions of input-output stability (IO-stability) in continuous control theory. We show that IO-stability captures two intuitive goals of robustness: bounded disturbances lead to bounded deviations from nominal behavior, and the effect of a sporadic disturbance disappears in finitely many steps. We show that existing notions of robustness for discrete systems do not have these two properties. For systems modeled as finite-state transducers, we show that IO-stability can be verified and the synthesis problem can be solved in polynomial time. We illustrate our theory using a reference broadcast synchronization protocol for wireless networks.
引用
收藏
页码:217 / 226
页数:10
相关论文
共 50 条