Breather Wave Solutions and Interaction Solutions for Two Mixed Calogero-Bogoyavlenskii-Schiff and Bogoyavlensky-Konopelchenko Equations

被引:5
|
作者
Ma, Hongcai [1 ,2 ]
Zhang, Caoyin [1 ]
Deng, Aiping [1 ,2 ]
机构
[1] Donghua Univ, Dept Appl Math, Shanghai 201620, Peoples R China
[2] Donghua Univ, Inst Nonlinear Sci, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
DE-VRIES EQUATION; SOLITON-SOLUTIONS; LUMP SOLUTIONS; RATIONAL SOLUTIONS; ROGUE WAVE;
D O I
10.1155/2020/1458280
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, based on a bilinear differential equation, we study the breather wave solutions by employing the extended homoclinic test method. By constructing the different forms, we also consider the interaction solutions. Furthermore, it is natural to analyse dynamic behaviors of three-dimensional plots.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Lump Solutions for Two Mixed Calogero-Bogoyavlenskii-Schiff and Bogoyavlensky-Konopelchenko Equations
    Ren, Bo
    Ma, Wen-Xiu
    Yu, Jun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (06) : 658 - 662
  • [2] Lump Solutions for Two Mixed Calogero-Bogoyavlenskii-Schiff and Bogoyavlensky-Konopelchenko Equations
    任博
    马文秀
    俞军
    Communications in Theoretical Physics, 2019, 71 (06) : 658 - 662
  • [3] Shock wave solutions to the Bogoyavlensky-Konopelchenko equation
    Triki, H.
    Jovanoski, Z.
    Biswas, A.
    INDIAN JOURNAL OF PHYSICS, 2014, 88 (01) : 71 - 74
  • [4] Breather wave, periodic, and cross-kink solutions to the generalized Bogoyavlensky-Konopelchenko equation
    Manafian, Jalil
    Ivatloo, Behnam Mohammadi
    Abapour, Mehdi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (04) : 1753 - 1774
  • [5] Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation
    Chen, Shou-Ting
    Ma, Wen-Xiu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (07) : 1680 - 1685
  • [6] D'Alembert wave and interaction solutions for a (3+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation
    Feng, Qing-Jiang
    Zhang, Guo-Qing
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (08):
  • [7] Hybrid localized wave solutions for a generalized Calogero–Bogoyavlenskii–Konopelchenko–Schiff system in a fluid or plasma
    Peng-Fei Han
    Taogetusang Bao
    Nonlinear Dynamics, 2022, 108 : 2513 - 2530
  • [8] Exact solutions for Calogero-Bogoyavlenskii-Schiff equation using symmetry method
    Moatimid, G. M.
    El-Shiekh, Rehab M.
    Al-Nowehy, Abdul-Ghani A. A. H.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 455 - 462
  • [9] Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations
    Wazwaz, Abdul-Majid
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (02) : 592 - 597
  • [10] Lump, mixed lump-stripe, mixed rogue wave-stripe and breather wave solutions for a (3+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation
    Liu, Shao-Hua
    Tian, Bo
    Qu, Qi-Xing
    Zhang, Chen-Rong
    Hu, Cong-Cong
    Wang, Meng
    MODERN PHYSICS LETTERS B, 2020, 34 (23):