Clinical Outcome Prediction in Aneurysmal Subarachnoid Hemorrhage Using Bayesian Neural Networks with Fuzzy Logic Inferences

被引:31
|
作者
Lo, Benjamin W. Y. [1 ,2 ]
Macdonald, R. Loch [3 ]
Baker, Andrew [4 ,5 ,6 ]
Levine, Mitchell A. H. [7 ,8 ]
机构
[1] Univ Toronto, St Michaels Hosp, Div Neurosurg, Toronto, ON M5B 1W8, Canada
[2] Univ Toronto, St Michaels Hosp, Div Crit Care Med, Toronto, ON M5B 1W8, Canada
[3] Univ Toronto, St Michaels Hosp, Li Ka Shing Knowledge Inst, Keenan Res Ctr, Toronto, ON M5B 1W8, Canada
[4] St Michaels Hosp, Li Ka Shing Knowledge Inst, Keenan Res Ctr, Dept Crit Care,Trauma & Neurosurg Program, Toronto, ON M5B 1W8, Canada
[5] Univ Toronto, Dept Anesthesia, Toronto, ON M5B 1W8, Canada
[6] Univ Toronto, Dept Surg, Toronto, ON M5B 1W8, Canada
[7] McMaster Univ Toronto, St Josephs Hosp, Ctr Evaluat Med, Dept Clin Epidemiol & Biostat, Toronto, ON, Canada
[8] McMaster Univ Toronto, St Josephs Hosp, Ctr Evaluat Med, Dept Med, Toronto, ON, Canada
关键词
VEHICLE-CONTROLLED TRIAL; DOSE TIRILAZAD MESYLATE; DOUBLE-BLIND; INDEPENDENT PREDICTOR; RISK-FACTORS; DYSFUNCTION; MANAGEMENT; AUSTRALIA; EUROPE; WOMEN;
D O I
10.1155/2013/904860
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objective. The novel clinical prediction approach of Bayesian neural networks with fuzzy logic inferences is created and applied to derive prognostic decision rules in cerebral aneurysmal subarachnoid hemorrhage (aSAH). Methods. The approach of Bayesian neural networks with fuzzy logic inferences was applied to data from five trials of Tirilazad for aneurysmal subarachnoid hemorrhage (3551 patients). Results. Bayesian meta-analyses of observational studies on aSAH prognostic factors gave generalizable posterior distributions of population mean log odd ratios (ORs). Similar trends were noted in Bayesian and linear regression ORs. Significant outcome predictors include normal motor response, cerebral infarction, history of myocardial infarction, cerebral edema, history of diabetes mellitus, fever on day 8, prior subarachnoid hemorrhage, admission angiographic vasospasm, neurological grade, intraventricular hemorrhage, ruptured aneurysm size, history of hypertension, vasospasm day, age and mean arterial pressure. Heteroscedasticity was present in the nontransformed dataset. Artificial neural networks found nonlinear relationships with 11 hidden variables in 1 layer, using the multilayer perceptron model. Fuzzy logic decision rules (centroid defuzzification technique) denoted cut-off points for poor prognosis at greater than 2.5 clusters. Discussion. This aSAH prognostic system makes use of existing knowledge, recognizes unknown areas, incorporates one's clinical reasoning, and compensates for uncertainty in prognostication.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Clinical outcome prediction in aneurysmal subarachnoid hemorrhage using bayesian neural networks with fuzzy logic inferences
    Lo, Benjamin W. Y.
    Macdonald, R. Loch
    Baker, Andrew
    Levine, Mitchell A. H.
    [J]. Computational and Mathematical Methods in Medicine, 2013, 2013
  • [2] Outcome Prediction in Aneurysmal Subarachnoid Hemorrhage
    van der Jagt, Mathieu
    [J]. JOURNAL OF NEUROSURGICAL ANESTHESIOLOGY, 2010, 22 (03) : 265 - 265
  • [3] Prediction Models in Aneurysmal Subarachnoid Hemorrhage: Forecasting Clinical Outcome With Artificial Intelligence
    de Jong, Guido
    Aquarius, Rene
    Sanaan, Barof
    Bartels, Ronald H. M. A.
    Grotenhuis, J. Andre
    Henssen, Dylan J. H. A.
    Boogaarts, Hieronymus D.
    [J]. NEUROSURGERY, 2021, 88 (05) : E427 - E434
  • [4] DETERMINANTS OF CLINICAL OUTCOME AFTER ANEURYSMAL SUBARACHNOID HEMORRHAGE
    BROTT, T
    MANDYBUR, T
    [J]. ANNALS OF NEUROLOGY, 1984, 16 (01) : 156 - 156
  • [5] Surgical timing of aneurysmal subarachnoid hemorrhage - Impact on clinical outcome
    Lim, D.
    Ha, S. K.
    Kim, S. H.
    Kim, S. D.
    Choi, J. I.
    Kim, B. J.
    [J]. INTERNATIONAL JOURNAL OF STROKE, 2014, 9 : 120 - 121
  • [6] Clinical characteristics and outcome of aneurysmal subarachnoid hemorrhage with intracerebral hematoma
    Wan, Anthony
    Jaja, Blessing N. R.
    Schweizer, Tom A.
    Macdonald, R. Loch
    [J]. JOURNAL OF NEUROSURGERY, 2016, 125 (06) : 1344 - 1351
  • [7] Clinical Demographic Association and Outcome in Patients with Aneurysmal Subarachnoid Hemorrhage
    Bansal, Mayank
    Mittal, R. S.
    [J]. INDIAN JOURNAL OF NEUROSURGERY, 2015, 4 (02) : 63 - 68
  • [8] Clinical Prediction Models for Aneurysmal Subarachnoid Hemorrhage: A Systematic Review
    Blessing N. R. Jaja
    Michael D. Cusimano
    Nima Etminan
    Daniel Hanggi
    David Hasan
    Don Ilodigwe
    Hector Lantigua
    Peter Le Roux
    Benjamin Lo
    Ada Louffat-Olivares
    Stephan Mayer
    Andrew Molyneux
    Audrey Quinn
    Tom A. Schweizer
    Thomas Schenk
    Julian Spears
    Michael Todd
    James Torner
    Mervyn D. I. Vergouwen
    George K. C. Wong
    Jeff Singh
    R. Loch Macdonald
    [J]. Neurocritical Care, 2013, 18 : 143 - 153
  • [9] Clinical Prediction Models for Aneurysmal Subarachnoid Hemorrhage: A Systematic Review
    Jaja, Blessing N. R.
    Cusimano, Michael D.
    Etminan, Nima
    Hanggi, Daniel
    Hasan, David
    Ilodigwe, Don
    Lantigua, Hector
    Le Roux, Peter
    Lo, Benjamin
    Louffat-Olivares, Ada
    Mayer, Stephan
    Molyneux, Andrew
    Quinn, Audrey
    Schweizer, Tom A.
    Schenk, Thomas
    Spears, Julian
    Todd, Michael
    Torner, James
    Vergouwen, Mervyn D. I.
    Wong, George K. C.
    Singh, Jeff
    Macdonald, R. Loch
    [J]. NEUROCRITICAL CARE, 2013, 18 (01) : 143 - 153
  • [10] Clinical Outcome Prediction of Early Brain Injury in Aneurysmal Subarachnoid Hemorrhage: the SHELTER-Score
    Hofmann, Bjoern B.
    Donaldson, Daniel M.
    Neyazi, Milad
    Abusabha, Yousef
    Beseoglu, Kerim
    Haenggi, Daniel
    Cornelius, Jan F.
    Fischer, Igor
    Muhammad, Sajjad
    [J]. NEUROCRITICAL CARE, 2024, 40 (02) : 438 - 447