Improved Algorithm for the k-means Clustering

被引:0
|
作者
Zhang, Sheng [1 ]
Wang, Shouqiang [1 ]
机构
[1] Shandong Jiaotong Univ, Sch Informat Sci & Elect Engn, Jinan, Shandong, Peoples R China
关键词
k-means; clustering; clustering center;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the standard k-means clustering and gives an improved algorithm based on selecting the initial centers and overcoming the local minimal values. Experiments show that the new algorithm is more effective and can get a better result than the standard k-means clustering.
引用
收藏
页码:4717 / 4720
页数:4
相关论文
共 7 条
  • [1] Elkan Charles, 2003, P 12 INT C MACH LEAR
  • [2] Har-Peled Sariel, 2004, P 36 ACM STOC, P291, DOI [10.1145/1007352.1007400, DOI 10.1137/070699007]
  • [3] A local search approximation algorithm for k-means clustering
    Kanungo, T
    Mount, DM
    Netanyahu, NS
    Piatko, CD
    Silverman, R
    Wu, AY
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2004, 28 (2-3): : 89 - 112
  • [4] A simple linear time (1+ε)-approximation algorithm for k-means clustering in any dimensions
    Kumar, A
    Sabharwal, Y
    Sen, S
    [J]. 45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, : 454 - 462
  • [5] On approximate geometric k-clustering
    Matousek, J
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (01) : 61 - 84
  • [6] Ostrovsky R, 2006, ANN IEEE SYMP FOUND, P165
  • [7] An empirical comparison of four initialization methods for the K-Means algorithm
    Peña, JM
    Lozano, JA
    Larrañaga, P
    [J]. PATTERN RECOGNITION LETTERS, 1999, 20 (10) : 1027 - 1040