Marine collagen scaffolds and photobiomodulation on bone healing process in a model of calvaria defects

被引:21
|
作者
Cruz, M. A. [1 ]
Fernandes, K. R. [1 ]
Parisi, J. R. [2 ]
Vale, G. C. A. [1 ]
Junior, S. R. A. [1 ]
Freitas, F. R. [1 ]
Sales, A. F. S. [1 ]
Fortulan, C. A. [2 ]
Peitl, O. [2 ]
Zanotto, E. [2 ]
Granito, R. N. [1 ]
Ribeiro, A. M. [1 ]
Renno, A. C. M. [1 ]
机构
[1] Fed Univ Sao Paulo UNIFESP, Dept Biosci, Santos, SP, Brazil
[2] Fed Univ Sao Carlos UFSCar, Dept Fisiotherapy, Sao Carlos, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bone healing; Marine sponges; Collagen; Biomaterials; Histomorphometry; Photobiomodulation; LEVEL LASER THERAPY; BIPHASIC DOSE-RESPONSE; SPONGE COLLAGEN; EXPRESSION; GROWTH; REPAIR; RATS; SKIN;
D O I
10.1007/s00774-020-01102-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction Collagen from marine esponges has been used as a promising material for tissue engineering proposals. Similarly, photobiomodulation (PBM) is able of modulating inflammatory processes after an injury, accelerating soft and hard tissue healing and stimulating neoangiogenesis. However, the effects of the associated treatments on bone tissue healing have not been studied yet. In this context, the present study aimed to evaluate the biological temporal modifications (using two experimental periods) of marine sponge collagen or sponging (SPG) based scaffold and PBM on newly formed bone using a calvaria bone defect model. Material and Methods Wistar rats were distributed into two groups: SPG or SPG/PBM and euthanized into two different experimental periods (15 and 45 days post-surgery). A cranial critical bone defect was used to evaluate the effects of the treatments. Histology, histomorfometry and immunohistological analysis were performed. Results Histological findings demonstrated that SPG/PBM-treated animals, 45 days post-surgery, demonstrated a higher amount of connective and newly formed bone tissue at the region of the defect compared to CG. Notwithstanding, no difference among groups were observed in the histomorphometry. Interestingly, for both anti-transforming growth factor-beta (TGF-beta) and anti-vascular endothelial growth factor (VEGF) immunostaining, higher values for SPG/PBM, at 45 days post-surgery could be observed. Conclusion It can be concluded that the associated treatment can be considered as a promising therapeutical intervention.
引用
收藏
页码:639 / 647
页数:9
相关论文
共 50 条
  • [1] Marine collagen scaffolds and photobiomodulation on bone healing process in a model of calvaria defects
    M. A. Cruz
    K. R. Fernandes
    J. R. Parisi
    G. C. A. Vale
    S. R. A. Junior
    F. R. Freitas
    A. F. S. Sales
    C. A. Fortulan
    O. Peitl
    E. Zanotto
    R. N. Granito
    A. M. Ribeiro
    A. C. M. Renno
    Journal of Bone and Mineral Metabolism, 2020, 38 : 639 - 647
  • [2] PCL REINFORCED COLLAGEN SCAFFOLDS FOR ENDOCHONDRAL HEALING OF BONE DEFECTS
    Leemhuis, Hans
    Stadter, Janina
    Tortorici, Martina
    Braun, Karsten
    Duda, Georg
    Petersen, Ansgar
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 672 - 672
  • [3] Photobiomodulation on critical bone defects of rat calvaria: a systematic review
    Brassolatti, Patricia
    Martins de Andrade, Ana Laura
    Bossini, Paulo Sergio
    Orth, Daiana Laurenci
    Duarte, Fernanda Oliveira
    dos Anjos Souza, Ana Beatriz
    Parizotto, Nivaldo Antonio
    Anibal, Fernanda de Freitas
    LASERS IN MEDICAL SCIENCE, 2018, 33 (09) : 1841 - 1848
  • [4] Photobiomodulation on critical bone defects of rat calvaria: a systematic review
    Patricia Brassolatti
    Ana Laura Martins de Andrade
    Paulo Sérgio Bossini
    Daiana Laurenci Orth
    Fernanda Oliveira Duarte
    Ana Beatriz dos Anjos Souza
    Nivaldo Antonio Parizotto
    Fernanda de Freitas Anibal
    Lasers in Medical Science, 2018, 33 : 1841 - 1848
  • [5] Bioglass/collagen scaffolds combined with bone marrow stromal cells on bone healing in an experimental model in cranial defects in rats
    Kido, H. W.
    Gabbai-Armelin, P. R.
    Magri, A. M. P.
    Fernandes, K. R.
    Cruz, M. A.
    Santana, A. F.
    Caliari, H. M.
    Parisi, J. R.
    Avanzi, I. R.
    Daguano, J. K. M. B.
    Granito, R. N.
    Fortulan, C. A.
    Renno, A. C. M.
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2023, 37 (09) : 1632 - 1644
  • [6] APPLICATION OF NANO COMPOSITES IN CALVARIA HEALING AND BONE DEFECTS: A LITERATURE OF REVIEW
    Fard, Shafaee S.
    Khanghahi, A. A.
    Moghaddam, Roshandel B.
    Ahmadian, A.
    Ebrahimi, A.
    ANNALS OF DENTAL SPECIALTY, 2018, 6 (01): : 77 - 82
  • [7] Suitability of Chitosan Scaffolds with Carbon Nanotubes for Bone Defects Treated with Photobiomodulation
    Silva, Samantha Ketelyn
    Guzzi Plepis, Ana Maria
    Amaro Martins, Virginia da Conceicao
    Horn, Marilia Marta
    Buchaim, Daniela Vieira
    Buchaim, Rogerio Leone
    Pelegrine, Andre Antonio
    Silva, Vinicius Rodrigues
    Matsumoto Kudo, Mateus Hissashi
    Rebello Fernandes, Jose Francisco
    Nazari, Fabricio Montenegro
    da Cunha, Marcelo Rodrigues
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (12)
  • [8] Homeostasis of blood parameters and inflammatory markers analysis during bone defect healing after scaffolds implantation in mice calvaria defects
    Cornel, Balta
    Herman, Hildegard
    Rosu, Marcel
    Cotoraci, Coralia
    Ivan, Alexandra
    Folk, Alexandra
    Duka, Robert
    Dinescu, Sorina
    Costache, Marieta
    Petre, Alexandru
    Hermenean, Anca
    ROMANIAN BIOTECHNOLOGICAL LETTERS, 2016, 21 (06): : 12018 - 12025
  • [9] RECONSTITUTED BOVINE SKIN COLLAGEN ENHANCES HEALING OF BONE WOUNDS IN THE RAT CALVARIA
    DEPORTER, DA
    KOMORI, N
    HOWLEY, TP
    SHIGA, A
    GHENT, A
    HANSEL, P
    PARISIEN, K
    CALCIFIED TISSUE INTERNATIONAL, 1988, 42 (05) : 321 - 325
  • [10] The Effects of Photobiomodulation on Healing of Bone Defects in Streptozotocin Induced Diabetic Rats
    Martinez Costa Lino, Maira D.
    de Carvalho, Fabiola Bastos
    Moraes, Michel Ferreira
    Cardoso, Jose Augusto
    Barbosa Pinheiro, Antonio L.
    Pedreira Ramalho, Luciana Maria
    MECHANISMS FOR LOW-LIGHT THERAPY VI, 2011, 7887