Atlas of Transcription Factor Binding Sites from ENCODE DNase Hypersensitivity Data across 27 Tissue Types

被引:21
|
作者
Funk, Cory C. [1 ]
Casella, Alex M. [2 ,3 ]
Jung, Segun [4 ]
Richards, Matthew A. [1 ]
Rodriguez, Alex [4 ]
Shannon, Paul [1 ]
Donovan-Maiye, Rory [1 ]
Ben Heavner [1 ]
Chard, Kyle [4 ]
Xiao, Yukai [4 ]
Glusman, Gustavo [1 ]
Ertekin-Taner, Nilufer [5 ]
Golde, Todd E. [5 ]
Toga, Arthur [6 ]
Hood, Leroy [1 ]
Van Horn, John D. [7 ]
Kesselman, Carl [8 ]
Foster, Ian [4 ,9 ]
Madduri, Ravi [4 ,9 ]
Price, Nathan D. [1 ]
Ament, Seth A. [2 ,10 ]
机构
[1] Inst Syst Biol, Seattle, WA 98109 USA
[2] Univ Maryland, Inst Genome Sci, Sch Med, Baltimore, MD 21201 USA
[3] Univ Maryland, Med Scientist Training Program, Sch Med, Baltimore, MD 21201 USA
[4] Univ Chicago, Globus, Chicago, IL 60637 USA
[5] Mayo Clin, Dept Neurosci, Jacksonville, FL 32224 USA
[6] Univ Southern Calif, Mark & Mary Stevens Neuroimaging & Informat Inst, Los Angeles, CA 90033 USA
[7] Univ Southern Calif, Dept Psychol, Los Angeles, CA 90007 USA
[8] Univ Southern Calif, Informat Sci Inst, Los Angeles, CA 90292 USA
[9] Argonne Natl Lab, Data Sci & Learning Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[10] Univ Maryland, Sch Med, Dept Psychiat, Baltimore, MD 21201 USA
来源
CELL REPORTS | 2020年 / 32卷 / 07期
关键词
GENOME-WIDE ASSOCIATION; PARTITIONING HERITABILITY; CAUSAL VARIANTS; LOCI; ENCYCLOPEDIA; CIRCUITRY; DYNAMICS; ELEMENTS; GENES; RISK;
D O I
10.1016/j.celrep.2020.108029
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Characterizing the tissue-specific binding sites of transcription factors (TFs) is essential to reconstruct gene regulatory networks and predict functions for non-coding genetic variation. DNase-seq footprinting enables the prediction of genome-wide binding sites for hundreds of TFs simultaneously. Despite the public availability of high-quality DNase-seq data from hundreds of samples, a comprehensive, up-to-date resource for the locations of genomic footprints is lacking. Here, we develop a scalable footprinting workflow using two state-of-the-art algorithms: Wellington and HINT. We apply our workflow to detect footprints in 192 ENCODE DNase-seq experiments and predict the genomic occupancy of 1,515 human TFs in 27 human tissues. We validate that these footprints overlap true-positive TF binding sites from ChIP-seq. We demonstrate that the locations, depth, and tissue specificity of footprints predict effects of genetic variants on gene expression and capture a substantial proportion of genetic risk for complex traits.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Detection of active transcription factor binding sites with the combination of DNase hypersensitivity and histone modifications
    Gusmao, Eduardo G.
    Dieterich, Christoph
    Zenke, Martin
    Costa, Ivan G.
    BIOINFORMATICS, 2014, 30 (22) : 3143 - 3151
  • [2] BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data
    Kahara, Juhani
    Lahdesmaki, Harri
    BIOINFORMATICS, 2015, 31 (17) : 2852 - 2859
  • [3] Romulus: robust multi-state identification of transcription factor binding sites from DNase-seq data
    Jankowski, Aleksander
    Tiuryn, Jerzy
    Prabhakar, Shyam
    BIOINFORMATICS, 2016, 32 (16) : 2419 - 2426
  • [4] Predicting tissue specific transcription factor binding sites
    Shan Zhong
    Xin He
    Ziv Bar-Joseph
    BMC Genomics, 14
  • [5] Predicting tissue specific transcription factor binding sites
    Zhong, Shan
    He, Xin
    Bar-Joseph, Ziv
    BMC GENOMICS, 2013, 14
  • [6] Discriminative discovery of transcription factor binding sites from location data
    Kawada, Y
    Sakakibara, Y
    2005 IEEE Computational Systems Bioinformatics Conference, Proceedings, 2005, : 86 - 89
  • [7] Identification method of transcription factor binding sites based on DNase-Seq signal
    Sang, Peichao
    Chen, Duojiao
    Xu, Siwen
    Feng, Weixing
    2015 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, 2015, : 1665 - 1669
  • [8] Divergence of transcription factor binding sites across related yeast species
    Borneman, Anthony R.
    Gianoulis, Tara A.
    Zhang, Zhengdong D.
    Yu, Haiyuan
    Rozowsky, Joel
    Seringhaus, Michael R.
    Wang, Lu Yong
    Gerstein, Mark
    Snyder, Michael
    SCIENCE, 2007, 317 (5839) : 815 - 819
  • [9] Pinpointing transcription factor binding sites from ChIP-seq data with SeqSite
    Wang, Xi
    Zhang, Xuegong
    BMC SYSTEMS BIOLOGY, 2011, 5
  • [10] FROM BINDING MOTIFS IN CHIP-SEQ DATA TO IMPROVED MODELS OF TRANSCRIPTION FACTOR BINDING SITES
    Kulakovskiy, Ivan
    Levitsky, Victor
    Oshchepkov, Dmitry
    Bryzgalov, Leonid
    Vorontsov, Ilya
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2013, 11 (01)