An asymptotic theory for Sliced Inverse Regression

被引:43
|
作者
Saracco, J [1 ]
机构
[1] UNIV TOULOUSE 3,LAB STAT & PROBABIL,F-31062 TOULOUSE,FRANCE
关键词
Delta method; eigenelements; eigenprojectors;
D O I
10.1080/03610929708832039
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sliced Inverse Regression (S.I.R.) is a method for reducing the dimension of the explanatory variable x in nonparametric regression problems. Li (1991) considers a general regression model of the form y = g(x'beta(1)...,x'beta(K),epsilon) with an arbitrary and unknown link function g, and studies a link-free and distribution-free method for estimating E, the space spanned by the beta(k)`s, called the effective dimension reduction (e.d.r.) space. It is widely applicable, easy to implement on a computer and requires no nonparametric smoothing devices such as kernel regression. The method begins with a partition of the range of y into a fixed number of slices. Let us denote T(.) this partition. The conditional mean of x given T(y) is then estimated by the sample mean within each slice. After that the covariance matrix of the conditional mean, Gamma(T) := var(E[[x\T(y)]), is estimated by <(Gamma)over cap>(T), the sample covariance matrix of all slice's conditional means. Let us denote Sigma (resp. <(Sigma)over cap>) the theoretical (resp. sample) covariance matrix of x. Finally the It eigenvectors associated with the largest K eigenvalues of Sigma(-1)Gamma(T) span the e.d.r, space, and the K eigenvectors associated with the largest K eigenvalues of <(Sigma)over cap>(-1)<(Gamma)over cap>(T) give an estimate of a basis of E. In this paper, we establish the asymptotic distribution of the aforedefined estimator of a basis of E. The asymptotic distributions of the associated eigenprojector, eigenvalues and eigenvectors are obtained.
引用
收藏
页码:2141 / 2171
页数:31
相关论文
共 50 条
  • [1] AN ASYMPTOTIC THEORY FOR SLICED INVERSE REGRESSION
    HSING, TL
    CARROLL, RJ
    [J]. ANNALS OF STATISTICS, 1992, 20 (02): : 1040 - 1061
  • [2] An asymptotic result for sliced inverse regression
    Kotter, T
    [J]. COMPUTATIONAL STATISTICS, 1996, 11 (02) : 113 - 136
  • [3] Asymptotic Test for Dimensionality in Sliced Inverse Regression
    Park, Chongsun
    Kwak, Jae Guen
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2005, 18 (02) : 381 - 393
  • [4] Sparse sliced inverse regression
    Li, Lexin
    Nachtsheim, Christopher J.
    [J]. TECHNOMETRICS, 2006, 48 (04) : 503 - 510
  • [5] Collaborative sliced inverse regression
    Chiancone, Alessandro
    Girard, Stephane
    Chanussot, Jocelyn
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (12) : 6035 - 6053
  • [6] Sliced inverse regression with regularizations
    Li, Lexin
    Yin, Xiangrong
    [J]. BIOMETRICS, 2008, 64 (01) : 124 - 131
  • [7] ASYMPTOTICS OF SLICED INVERSE REGRESSION
    ZHU, LX
    NG, KW
    [J]. STATISTICA SINICA, 1995, 5 (02) : 727 - 736
  • [8] Student Sliced Inverse Regression
    Chiancone, Alessandro
    Forbes, Florence
    Girard, Stephane
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 113 : 441 - 456
  • [9] Random sliced inverse regression
    Hilafu, Haileab
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (05) : 3516 - 3526
  • [10] Tensor sliced inverse regression
    Ding, Shanshan
    Cook, R. Dennis
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 133 : 216 - 231