Suslov Problem with the Clebsch - Tisserand Potential

被引:1
|
作者
Hu, Shengda [1 ]
Santoprete, Manuele [1 ]
机构
[1] Wilfrid Laurier Univ, Dept Math, 75 Univ Ave West, Waterloo, ON, Canada
来源
REGULAR & CHAOTIC DYNAMICS | 2018年 / 23卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Suslov Problem; topology of level sets; nonholonomic systems; rigid body; Chaplygin systems; SUPERINTEGRABILITY; MECHANICS; DYNAMICS;
D O I
10.1134/S1560354718020053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a nonholonomic mechanical system, namely, the Suslov problem with the Clebsch - Tisserand potential. We analyze the topology of the level sets defined by the integrals in two ways: using an explicit construction and as a consequence of the Poincare - Hopf theorem. We describe the flow on such manifolds.
引用
收藏
页码:193 / 211
页数:19
相关论文
共 50 条
  • [1] Suslov Problem with the Clebsch–Tisserand Potential
    Shengda Hu
    Manuele Santoprete
    Regular and Chaotic Dynamics, 2018, 23 : 193 - 211
  • [2] Invariant manifolds in the Clebsch-Tisserand-Brun problem
    Irtegov, V. D.
    Titorenko, T. N.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2012, 76 (03): : 268 - 274
  • [3] Invariant sets in the Clebsch-Tisserand problem: Existence and stability
    Karapetyan, A. V.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2006, 70 (06): : 859 - 864
  • [4] The inhomogeneous Suslov problem
    Garcia-Naranjo, Luis C.
    Maciejewski, Andrzej J.
    Marrero, Juan C.
    Przybylska, Maria
    PHYSICS LETTERS A, 2014, 378 (32-33) : 2389 - 2394
  • [5] Nonintegrability of the Suslov problem
    Maciejewski, AJ
    Przybylska, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (03) : 1065 - 1078
  • [6] ON QUADRATIC INTEGRALS IN THE SUSLOV PROBLEM
    NIKIFOROV, VM
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1987, (02): : 87 - 90
  • [7] Hamiltonicity and integrability of the Suslov problem
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    Regular and Chaotic Dynamics, 2011, 16 : 104 - 116
  • [8] The geometry and integrability of the Suslov problem
    Fernandez, Oscar E.
    Bloch, Anthony M.
    Zenkov, Dmitry V.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
  • [9] Hamiltonicity and integrability of the Suslov problem
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (1-2): : 104 - 116
  • [10] NON-INTEGRABILITY OF THE SUSLOV PROBLEM
    Maciejewski, A. J.
    Przybylska, M.
    REGULAR & CHAOTIC DYNAMICS, 2002, 7 (01): : 73 - 80