Estimating foliar biochemistry from hyperspectral data in mixed forest canopy

被引:51
|
作者
Huber, Silvia [1 ,2 ]
Kneubuhler, Mathias [2 ]
Psomas, Achilleas [3 ]
Itten, Klaus [2 ]
Zimmermann, Niklaus E. [3 ]
机构
[1] Univ Wageningen & Res Ctr, Ctr Geoinformat, NL-6700 AA Wageningen, Netherlands
[2] Univ Zurich, Dept Geog, Remote Sensing Labs, CH-8057 Zurich, Switzerland
[3] Swiss Fed Res Inst WSL, Land Use Dynam Unit, CH-8903 Birmensdorf, Switzerland
关键词
HyMap; continuum removal; band-depth analysis; branch-and-bound algorithm;
D O I
10.1016/j.foreco.2008.05.011
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Estimating canopy biochemical composition in mixed forests at the level of tree species represents a critical tool fora better understanding and modeling of ecosystem functioning since many species exhibit differences in functional attributes or decomposition rates. We used airborne hyperspectral data to estimate the foliar concentration of nitrogen, carbon and water in three mixed forest canopies in Switzerland. With multiple linear regression models, continuum-removed and normalized HyMap spectra were related to foliar biochemistry on an individual tree level. The six spectral wavebands used in the regression models were selected using both an enumerative branch-and-bound (B&B) and a forward search algorithm. The models estimated foliar concentrations with adjusted R-2 values between 0.47 and 0.63, based on the best-sampled study site. Regression models composed of wavebands selected by the B&B algorithm always performed better than those developed with forward search. When extrapolating nitrogen concentrations from one to another study site, regression models solely based on causal wavebands (known from literature) mostly outperformed models based on all wavebands. The study demonstrates the potential of both the use of causal wavebands and of the B&B algorithm. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:491 / 501
页数:11
相关论文
共 50 条
  • [1] ESTIMATING LEAF AND CANOPY BIOCHEMISTRY VARIABLES IN MEDITERRANEAN HOLM OAK (QUERCUS ILEX) FROM PROXIMAL AND AIRBORNE HYPERSPECTRAL DATA
    Gonzalez-Cascon, R.
    Pacheco-Labrador, J.
    Moreno, G.
    Migliavacca, M.
    Martin, M. P.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8992 - 8995
  • [2] Monitoring litchi canopy foliar phosphorus content using hyperspectral data
    Li, Dan
    Wang, Chongyang
    Jiang, Hao
    Peng, Zhiping
    Yang, Ji
    Su, Yongxian
    Song, Jia
    Chen, Shuisen
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 154 : 176 - 186
  • [3] Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest
    Wang, Zhihui
    Wang, Tiejun
    Darvishzadeh, Roshanak
    Skidmore, Andrew K.
    Jones, Simon
    Suarez, Lola
    Woodgate, William
    Heiden, Uta
    Heurich, Marco
    Hearne, John
    [J]. REMOTE SENSING, 2016, 8 (06)
  • [4] Estimates of forest canopy fuel attributes using hyperspectral data
    Ha, Gensuo J.
    Burke, Ingrid C.
    Kaufmann, Merrill R.
    Goetz, Alexander F. H.
    Kindel, Bruce C.
    Pu, Yifen
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2006, 229 (1-3) : 27 - 38
  • [5] Forest Canopy Density Estimation Using Airborne Hyperspectral Data
    Kwon, Tae-Hyub
    Lee, Woo-Kyun
    Kwak, Doo-Ahn
    Park, Taejin
    Lee, Jong Yoel
    Hong, Suk Young
    Guishan, Cui
    Kim, So Ra
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2012, 28 (03) : 297 - 305
  • [6] Canopy foliar nitrogen retrieved from airborne hyperspectral imagery by correcting for canopy structure effects
    Wang, Zhihui
    Skidmore, Andrew K.
    Wang, Tiejun
    Darvishzadeh, Roshanak
    Heiden, Uta
    Heurich, Marco
    Latifi, Hooman
    Hearne, John
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 54 : 84 - 94
  • [7] Estimating canopy water content using hyperspectral remote sensing data
    Clevers, J. G. P. W.
    Kooistra, L.
    Schaepman, M. E.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2010, 12 (02) : 119 - 125
  • [8] Estimating forest canopy fuel parameters using LIDAR data
    Andersen, HE
    McGaughey, RJ
    Reutebuch, SE
    [J]. REMOTE SENSING OF ENVIRONMENT, 2005, 94 (04) : 441 - 449
  • [9] A Random Forest Model for Estimating Canopy Chlorophyll Content in Rice Using Hyperspectral Measurements
    Li, Xuqing
    Liu, Xiangnan
    Du, Zhihong
    Wang, Cuicui
    [J]. 2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2013, : 541 - 546
  • [10] Canopy spectral invariants, Part 2: Application to classification of forest types from hyperspectral data
    Schull, M. A.
    Knyazikhin, Y.
    Xu, L.
    Samanta, A.
    Carmona, P. L.
    Lepine, L.
    Jenkins, J. P.
    Ganguly, S.
    Myneni, R. B.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2011, 112 (04): : 736 - 750