Spectral properties of Sturm-Liouville system with eigenvalue-dependent boundary conditions

被引:4
|
作者
Arpat, Esra Kir [1 ]
Mutlu, Gokhan [1 ]
机构
[1] Gazi Univ, Fac Sci, Dept Math, TR-06500 Ankara, Turkey
关键词
Spectrum; eigenvalue; eigenfunction; resolvent; ADJOINT DIFFERENCE-OPERATORS; EIGENPARAMETER; SINGULARITIES;
D O I
10.1142/S0129167X15500809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the boundary value problem y(j)'' + lambda(2)y(j) = Sigma(n)(k=1) V-jk(x)y(k,) x is an element of R+ := (0,infinity) y(j)''(0) +(alpha(0)+alpha(1)lambda+alpha(2)lambda(2))y(j)(0) = 0, j = 1,2, .... , n, where lambda is the spectral parameter V(x) = vertical bar vertical bar V-jk(x)vertical bar vertical bar(n)(1) and is a Hermitian matrix such that integral(infinity)(x) t vertical bar V(t)vertical bar dt < infinity, x is an element of R+ and alpha(i) is an element of c,i =0,1,2 with alpha(2) not equal 0 In this paper, we investigate the eigenvalues and spectral singularities of L. In particular, we prove that L has a finite number of eigenvalues and spectral singularities with finite multiplicities, under the Naimark and Pavlov conditions.
引用
收藏
页数:8
相关论文
共 50 条