A Bayesian factorization method to recover single-cell RNA sequencing data

被引:4
|
作者
Wen, Zi-Hang [1 ,2 ]
Langsam, Jeremy L. [2 ]
Zhang, Lu [3 ]
Shen, Wenjun [4 ]
Zhou, Xin [2 ,5 ,6 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[2] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[3] Hong Kong Baptist Univ, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
[4] Shantou Univ, Dept Bioinformat, Med Coll, Shantou 515041, Peoples R China
[5] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37235 USA
[6] Data Sci Inst, Nashville, TN 37212 USA
来源
CELL REPORTS METHODS | 2022年 / 2卷 / 01期
关键词
SEQ DATA; EXPRESSION; HETEROGENEITY; MOUSE;
D O I
10.1016/j.crmeth.2021.100133
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) offers opportunities to study gene expression of tens of thousands of single cells simultaneously, to investigate cell-to-cell variation, and to reconstruct cell-type-specific gene regulatory networks. Recovering dropout events in a sparse gene expression matrix for scRNA-seq data is a long-standing matrix completion problem. In this article, we introduce Bfimpute, a Bayesian factorization imputation algorithm that reconstructs two latent gene and cell matrices to impute the final gene expression matrix within each cell group, with or without the aid of cell type labels or bulk data. Bfimpute achieves better accuracy than ten other publicly notable scRNA-seq imputation methods on simulated and real scRNA-seq data, as measured by several different evaluation metrics. Bfimpute can also flexibly integrate any gene- or cell-related information that users provide to increase performance.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Bayesian method to cluster single-cell RNA sequencing data using copy number alterations
    Milite, Salvatore
    Bergamin, Riccardo
    Patruno, Lucrezia
    Calonaci, Nicola
    Caravagna, Giulio
    [J]. BIOINFORMATICS, 2022, 38 (09) : 2512 - 2518
  • [2] A new bioinformatics tool to recover missing gene expression in single-cell RNA sequencing data
    Li, Jingyi Jessica
    [J]. JOURNAL OF MOLECULAR CELL BIOLOGY, 2021, 13 (01) : 1 - 2
  • [3] PanoView: An iterative clustering method for single-cell RNA sequencing data
    Hu, Ming-Wen
    Kim, Dong Won
    Liu, Sheng
    Zack, Donald J.
    Blackshaw, Seth
    Qian, Jiang
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (08)
  • [4] Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data
    Dadaneh, Siamak Zamani
    de Figueiredo, Paul
    Sze, Sing-Hoi
    Zhou, Mingyuan
    Qian, Xiaoning
    [J]. BMC GENOMICS, 2020, 21 (Suppl 9)
  • [5] BASiCS: Bayesian Analysis of Single-Cell Sequencing Data
    Vallejos, Catalina A.
    Marioni, John C.
    Richardson, Sylvia
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (06)
  • [6] A HIERARCHICAL BAYESIAN MODEL FOR SINGLE-CELL CLUSTERING USING RNA-SEQUENCING DATA
    Liu, Yiyi
    Warren, Joshua L.
    Zhao, Hongyu
    [J]. ANNALS OF APPLIED STATISTICS, 2019, 13 (03): : 1733 - 1752
  • [7] Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data
    Siamak Zamani Dadaneh
    Paul de Figueiredo
    Sing-Hoi Sze
    Mingyuan Zhou
    Xiaoning Qian
    [J]. BMC Genomics, 21
  • [8] Evaluation of single-cell classifiers for single-cell RNA sequencing data sets
    Zhao, Xinlei
    Wu, Shuang
    Fang, Nan
    Sun, Xiao
    Fan, Jue
    [J]. BRIEFINGS IN BIOINFORMATICS, 2020, 21 (05) : 1581 - 1595
  • [9] CELL SUBCLASS IDENTIFICATION IN SINGLE-CELL RNA-SEQUENCING DATA USING ORTHOGONAL NONNEGATIVE MATRIX FACTORIZATION
    Wang, Shuai
    Wu, Peng
    Zhou, Manqi
    Chang, Tsung-Hui
    Wu, Song
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 876 - 880
  • [10] Complex Analysis of Single-Cell RNA Sequencing Data
    Anna A. Khozyainova
    Anna A. Valyaeva
    Mikhail S. Arbatsky
    Sergey V. Isaev
    Pavel S. Iamshchikov
    Egor V. Volchkov
    Marat S. Sabirov
    Viktoria R. Zainullina
    Vadim I. Chechekhin
    Rostislav S. Vorobev
    Maxim E. Menyailo
    Pyotr A. Tyurin-Kuzmin
    Evgeny V. Denisov
    [J]. Biochemistry (Moscow), 2023, 88 : 231 - 252