Visual analysis of statistical results from microarray studies of human breast cancer

被引:0
|
作者
Reif, DM
Moore, JH
机构
[1] Dartmouth Med Sch, Computat Genet Lab, Norris Cotton Canc Ctr, Dept Genet, Lebanon, NH USA
[2] Dartmouth Med Sch, Dept Community & Family Med, Lebanon, NH USA
[3] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA
[4] Univ New Hampshire, Dept Comp Sci, Durham, NH 03824 USA
[5] Univ Vermont, Dept Comp Sci, Burlington, VT USA
关键词
software; data mining; pathways; gene ontology;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Computational and statistical analysis of microarray data is a daunting challenge. Perhaps even more daunting is the biological interpretation of microarray data analysis results. We have previously developed the exploratory visual analysis (EVA) software and database for exploring data analysis results in the context of biological information on each gene available in public databases such as Entrez Gene. EVA brings a flexible combination of statistics and biological annotation to the user's desktop in a straightforward visual interface. Using a publicly available microarray dataset of gene expression response to chemotherapeutic agents in human breast cancer cell lines, we demonstrate the usefulness of the EVA system for interpreting statistical results. EVA can extend previous analyses as well as aid in making novel discoveries. Thus, we anticipate EVA will prove a useful addition to the repertoire of computational methods for microarray data analysis. The EVA software is freely available to academic users.
引用
收藏
页码:1043 / 1047
页数:5
相关论文
共 50 条
  • [1] Chipping away at breast cancer: insights from microarray studies of human and mouse mammary cancer
    Desai, KV
    Kavanaugh, CJ
    Calvo, A
    Green, JE
    [J]. ENDOCRINE-RELATED CANCER, 2002, 9 (04) : 207 - 220
  • [2] Exploratory Visual Analysis of Statistical Results from Microarray Experiments Comparing High and Low Grade Glioma
    Reif, David
    Israel, Mark
    Moore, Jason
    [J]. CANCER INFORMATICS, 2007, 5 : 19 - 24
  • [3] Statistical discrimination of breast cancer microarray data
    Kumar, Gautam
    Lahiri, Tapobarata
    Kumar, Rajnish
    [J]. 2016 INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND SYSTEMS BIOLOGY (BSB), 2016,
  • [4] DNA microarray studies on breast cancer
    Kordek, Radzislaw
    Bednarek, Andrzej K.
    [J]. ONCOLOGY IN CLINICAL PRACTICE, 2005, 1 (01): : 10 - 17
  • [5] Reproducible statistical analysis in microarray profiling studies
    Mansmann, U
    Rushhaupt, M
    Huber, W
    [J]. METHODS OF INFORMATION IN MEDICINE, 2006, 45 (02) : 139 - 145
  • [6] Reproducible statistical analysis in microarray profiling studies
    Mansmann, Ulrich
    Ruschhaupt, Markus
    Huber, Wolfgang
    [J]. APPLIED PARALLEL COMPUTING: STATE OF THE ART IN SCIENTIFIC COMPUTING, 2006, 3732 : 939 - 948
  • [7] Identification of aberrant chromosomal regions from gene expression microarray studies applied to human breast cancer
    Buness, Andreas
    Kuner, Ruprecht
    Ruschhaupt, Markus
    Poustka, Annemarie
    Sueltmann, Holger
    Tresch, Achim
    [J]. BIOINFORMATICS, 2007, 23 (17) : 2273 - 2280
  • [8] Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
    Dupuy, Alain
    Simon, Richard M.
    [J]. JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2007, 99 (02) : 147 - 157
  • [9] Statistical studies on cancer of the breast.
    不详
    [J]. BRITISH MEDICAL JOURNAL, 1926, 1926 : 437 - 438
  • [10] Statistical Learning Analysis of Thyroid Cancer Microarray Data
    Petrini, Ivan
    Cecchini, Rocio L.
    Mascaro, Marilina
    Ponzoni, Ignacio
    Carballido, Jessica A.
    [J]. BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT II, 2022, : 90 - 102