Synthesis and Characterization of RuO2 Anode Materials with Large Surface Areas for Oxygen Evolution Reaction

被引:8
|
作者
Zhang, Yang [1 ]
Yue, Lixia [1 ]
Teng, Ke [1 ]
Yuan, Shiyong [1 ]
Ma, Hongchao [1 ]
机构
[1] Dalian Polytech Univ, Sch Chem Engn & Mat, Dalian 116034, Liaoning, Peoples R China
关键词
RuO2; high electrochemical activity; oxygen evolution; porous material; large surface area; RUTHENIUM OXIDE ELECTRODES; ELECTROCHEMICAL CAPACITORS; DIOXIDE; SUPERCAPACITOR; STORAGE;
D O I
10.14447/jnmes.v15i4.45
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A novel olivary or petal-like RuO2 material with large surface area was successfully synthesized by surfactant-assisted homogeneous precipitation method using urea and dodecyl sulfate as the source reagent. The surface morphology, structural, and electrochemical properties of as-synthesized RuO2 materials were characterized by x-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), Cyclic voltammetry (CV), N-2 adsorption-desorption isotherms and polarization curve for oxygen evolution reaction (OER). It was found that the morphology and crystalline structures and electrochemical properties of as-synthesized RuO2 materials were strongly dependent on the calcining temperature. The ruthenium-surfactant mesophase with mesoporous structure transformed from network to regular olivary or petal-like RuO2 materials and remaining partial mesoporous character after calcination at lower temperature (i.e., 300 and 400 degrees C). However, the mesophase transformed into RuO2 agglomeration consisted of nanosized particles after calcination at 650 degrees C, which may be attributed to complete deorganization and porous structure collapse of RuO2 materials. In addition, the as-synthesized RuO2 materials showed higher specific surface area and better electrochemical activities for oxygen evolution reaction compared with the RuO2 prepared without surfactant. The electrochemical activity of as-synthesized RuO2 material calcined at 400 degrees C is about 3 times than that of RuO2 prepared without surfactant for oxygen evolution reaction. This can be attributed to the porous structure and large surface area of as-synthesized RuO2 materials.
引用
收藏
页码:271 / 276
页数:6
相关论文
共 50 条
  • [1] Green Synthesis and Modification of RuO2 Materials for the Oxygen Evolution Reaction
    Devadas, Abirami
    Baranton, Steve
    Coutanceau, Christophe
    FRONTIERS IN ENERGY RESEARCH, 2020, 8
  • [2] Role of Dissolution Intermediates in Promoting Oxygen Evolution Reaction at RuO2(110) Surface
    Klyukin, Konstantin
    Zagalskaya, Alexandra
    Alexandrov, Vitaly
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (36): : 22151 - 22157
  • [3] Importance of Surface IrOx in Stabilizing RuO2 for Oxygen Evolution
    Escudero-Escribano, Maria
    Pedersen, Anders F.
    Paoli, Elisa A.
    Frydendal, Rasmus
    Friebel, Daniel
    Malacrida, Paolo
    Rossmeisl, Jan
    Stephens, Ifan E. L.
    Chorkendorff, Ib
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (02): : 947 - 955
  • [4] Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction
    Cheng Wang
    Liujun Jin
    Hongyuan Shang
    Hui Xu
    Yukihide Shiraishi
    Yukou Du
    Chinese Chemical Letters, 2021, 32 (07) : 2108 - 2116
  • [5] Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction
    Wang, Cheng
    Jin, Liujun
    Shang, Hongyuan
    Xu, Hui
    Shiraishi, Yukihide
    Du, Yukou
    CHINESE CHEMICAL LETTERS, 2021, 32 (07) : 2108 - 2116
  • [6] A Theoretical Investigation into the Role of Surface Defects for Oxygen Evolution on RuO2
    Dickens, Colin F.
    Norskov, Jens K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (34): : 18516 - 18524
  • [7] Characterization of various oxygen species on an oxide surface:: RuO2(110)
    Kim, YD
    Seitsonen, AP
    Wendt, S
    Wang, J
    Fan, C
    Jacobi, K
    Over, H
    Ertl, G
    JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (18): : 3752 - 3758
  • [8] A Facile Synthesis of Size-Controllable IrO2 and RuO2 Nanoparticles for the Oxygen Evolution Reaction
    Tam D. Nguyen
    Günther G. Scherer
    Zhichuan J. Xu
    Electrocatalysis, 2016, 7 : 420 - 427
  • [9] Facile synthesis of Mn/RuO2 nanosheets for high-performance acidic oxygen evolution reaction
    Zhang, Xinlai
    He, Xian
    Wang, Cheng
    Fan, Zeqiang
    Li, Bingchen
    Du, Peng
    Wang, Ruyue
    Yang, Hujiang
    Wang, Yonggang
    Zhang, Ruiming
    Huang, Kai
    Tang, Haolin
    MATERIALS LETTERS, 2023, 340
  • [10] Towards understanding the electrified RuO2 water interface for the oxygen evolution reaction
    Rao, Reshma
    Shao-Horn, Yang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257