Icosahedral Group and Classification of PSL(2,Z)-Orbits of Real Quadratic Fields

被引:1
|
作者
Chen, Tianlan [1 ]
Bari, Muhammad Nadeem [2 ]
Malik, Muhammad Aslam [2 ]
Afzal Siddiqui, Hafiz Muhammad [3 ]
Liu, Jia-Bao [4 ]
机构
[1] Guizhou Minzu Univ, Practice Training Ctr Engn Technol Talents, Guiyang 550025, Guizhou, Peoples R China
[2] Univ Punjab, Dept Math, Lahore 54590, Pakistan
[3] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[4] Anhui Jianzhu Univ, Sch Math & Phys, Hefei 230601, Peoples R China
关键词
MODULAR GROUP;
D O I
10.1155/2020/9568254
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Reduced numbers play an important role in the study of modular group action on the PSL(2, Z)-subset of Q(root mv)/Q. For this purpose, we define new notions of equivalent, cyclically equivalent, and similar G-circuits in PSL(2, Z)-orbits of real quadratic fields. In particular, we classify PSL(2, Z)-orbits of Q(root mv)/Q =UkNQ*(root k(2)m) containing G-circuits of length 6 and determine that the number of equivalence classes of G-circuits of length 6 is ten. We also employ the icosahedral group to explore cyclically equivalence classes of circuits and similar G-circuits of length 6 corresponding to each of these ten circuits. +is study also helps us in classifying reduced numbers lying in the PSL(2, Z)-orbits.
引用
收藏
页数:10
相关论文
共 50 条