Property (Bb) and Tensor product

被引:1
|
作者
Rashid, M. H. M. [1 ]
Prasad, T. [2 ]
机构
[1] Mutah Univ, Fac Sci, Dept Math, Al Karak, Jordan
[2] Govt Arts Coll Autonomous, Dept Math, Coimbatore 641018, Tamil Nadu, India
关键词
Property (Bw); Property (Bb); SVEP; tensor product; WEYLS THEOREM; GENERALIZED BROWDERS; POLAROID OPERATORS; PERTURBATIONS;
D O I
10.2298/FIL1307297R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we find necessary and sufficient conditions for Banach Space operator to satisfy the property (Bb). Then we obtain, if Banach Space operators A is an element of B(X) and B is an element of B(Y) satisfy property (Bb) implies A circle times B satisfies property (Bb) if and only if the B-Weyl spectrum identity sigma BW(A circle times B) = sigma(BW)(A)sigma(B)boolean OR sigma(BW)(B)sigma(A) holds. Perturbations by Riesz operators are considered.
引用
收藏
页码:1297 / 1303
页数:7
相关论文
共 50 条
  • [1] Property (Bv) and Tensor Product
    Aponte, Elvis
    Vasanthakumar, Ponraj
    Jayanthi, Narayanapillai
    SYMMETRY-BASEL, 2022, 14 (10):
  • [2] Tensor product and property (b)
    Rashid, M. H. M.
    PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (02) : 376 - 386
  • [3] Tensor product and property (b)
    M. H. M. Rashid
    Periodica Mathematica Hungarica, 2017, 75 : 376 - 386
  • [4] DAUGAVET PROPERTY IN TENSOR PRODUCT SPACES
    Zoca, Abraham Rueda
    Tradacete, Pedro
    Villanueva, Ignacio
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2021, 20 (04) : 1409 - 1428
  • [5] Holomorphic functions and the BB-property on product spaces
    Boyd, C
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2004, 41 (01) : 39 - 50
  • [6] BED property for the tensor product of Banach algebras
    Abtahi, Fatemeh
    Pedaran, Hmad
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2024, 105 (1-2): : 91 - 105
  • [7] Perturbation Theory for Property (VE) and Tensor Product
    Aponte, Elvis
    Sanabria, Jose
    Vasquez, Luis
    MATHEMATICS, 2021, 9 (21)
  • [8] Grothendieck Property for the Symmetric Projective Tensor Product
    Li, Yongjin
    Bu, Qingying
    Journal of Mathematical Study, 2016, 49 (04): : 429 - 432
  • [9] Support varieties without the tensor product property
    Bergh, Petter Andreas
    Plavnik, Julia Yael
    Witherspoon, Sarah
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (06) : 2150 - 2161
  • [10] Noncommutative Tensor Triangular Geometry and the Tensor Product Property for Support Maps
    Nakano, Daniel K.
    Vashaw, Kent B.
    Yakimov, Milen T.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (22) : 17766 - 17796