Automorphisms and isomorphisms of some p-ary bent functions

被引:1
|
作者
Dempwolff, Ulrich [1 ]
机构
[1] Univ Kaiserslautern, Dept Math, Erwin Schroedinger Str, D-67653 Kaiserslautern, Germany
关键词
Bent function; Automorphism group; EA equivalence; Cohomology; PERMUTATION-GROUPS; LINEAR-GROUPS; EQUIVALENCE;
D O I
10.1007/s10801-019-00884-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the predecessor to this paper Dempwolff (Comm Algebra 34(3):1077-1131,2006), group-theoretic methods were used to solve automorphism and equivalence questions for (certain) ordinary bent functions, i.e., bent functions over F-2. Here, we consider the same problems forp-ary bent functions,pan odd prime and solve these questions for functions analogous to those which appear in Dempwolff (Comm Algebra 34(3):1077-1131,2006). Although our general analysis is similar to the approach of Dempwolff (Comm Algebra 34(3):1077-1131,2006), it turns out that the odd characteristic leads to simplifications: Often, the double derivative can be computed (cf. Lemma 2.10) and factorizations of the automorphism group (cf. Lemma 2.3) can be established resulting in restrictions for automorphisms and equivalence maps.
引用
收藏
页码:527 / 566
页数:40
相关论文
共 50 条
  • [1] Automorphisms and isomorphisms of some p-ary bent functions
    Ulrich Dempwolff
    Journal of Algebraic Combinatorics, 2020, 51 : 527 - 566
  • [2] On the normality of p-ary bent functions
    Meidl, Wilfried
    Pirsic, Isabel
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (06): : 1037 - 1049
  • [3] On the normality of p-ary bent functions
    Wilfried Meidl
    Ísabel Pirsic
    Cryptography and Communications, 2018, 10 : 1037 - 1049
  • [4] A survey on p-ary and generalized bent functions
    Wilfried Meidl
    Cryptography and Communications, 2022, 14 : 737 - 782
  • [5] Constructions of p-ary quadratic bent functions
    Li, Shenghua
    Hu, Lei
    Zeng, Xiangyong
    ACTA APPLICANDAE MATHEMATICAE, 2008, 100 (03) : 227 - 245
  • [6] New classes of p-ary bent functions
    Bimal Mandal
    Pantelimon Stănică
    Sugata Gangopadhyay
    Cryptography and Communications, 2019, 11 : 77 - 92
  • [7] Constructions of p-ary Quadratic Bent Functions
    Shenghua Li
    Lei Hu
    Xiangyong Zeng
    Acta Applicandae Mathematicae, 2008, 100 : 227 - 245
  • [8] A Family of p-ary Binomial Bent Functions
    Zheng, Dabin
    Zeng, Xiangyong
    Hu, Lei
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (09) : 1868 - 1872
  • [9] New classes of p-ary bent functions
    Mandal, Bimal
    Stanica, Pantelimon
    Gangopadhyay, Sugata
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (01): : 77 - 92
  • [10] A survey on p-ary and generalized bent functions
    Meidl, Wilfried
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (04): : 737 - 782