Proving nonreachability by modulo-invariants

被引:9
|
作者
Desel, J
Neuendorf, KP
Radola, MD
机构
[1] HUMBOLDT UNIV BERLIN,INST INFORMAT,D-10099 BERLIN,GERMANY
[2] TECH UNIV MUNICH,INST INFORMAT,D-80290 MUNICH,GERMANY
关键词
D O I
10.1016/0304-3975(95)00117-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce modulo-invariants of Petri nets which are closely related to classical place-invariants but operate in residue classes module k instead of natural or rational numbers. Whereas place-invariants prove the nonreachability of a marking if and only if the corresponding marking equation has no solution in Q, a marking can be proved nonreachable by modulo-invariants if and only if the marking equation has no solution in Z. We show how to derive from each net a finite set of invariants - containing place-invariants and modulo-invariants - such that if any invariant proves the nonreachability of a marking, then some invariant of this set proves that the marking is not reachable.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 36 条
  • [1] Proving non-reachability by modulo-place-invariants
    Desel, J
    Radola, MD
    [J]. FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, 1994, 880 : 366 - 377
  • [2] Theorem proving modulo
    Dowek, G
    Hardin, T
    Kirchner, C
    [J]. JOURNAL OF AUTOMATED REASONING, 2003, 31 (01) : 33 - 72
  • [3] Theorem Proving Modulo
    Gilles Dowek
    Thérèse Hardin
    Claude Kirchner
    [J]. Journal of Automated Reasoning, 2003, 31 : 33 - 72
  • [4] Theorem proving modulo associativity
    Rubio, A
    [J]. COMPUTER SCIENCE LOGIC, 1996, 1092 : 452 - 467
  • [5] Equational Theorem Proving Modulo
    Kim, Dohan
    Lynch, Christopher
    [J]. AUTOMATED DEDUCTION, CADE 28, 2021, 12699 : 166 - 182
  • [6] Interactive Theorem Proving Modulo Fuzzing
    Muduli, Sujit Kumar
    Padulkar, Rohan Ravikumar
    Roy, Subhajit
    [J]. COMPUTER AIDED VERIFICATION, PT I, CAV 2024, 2024, 14681 : 480 - 493
  • [7] Towards Smaller Invariants for Proving Coverability
    Turonova, Lenka
    Holik, Lukas
    [J]. COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2017, PT II, 2018, 10672 : 109 - 116
  • [8] An Automated Approach for Proving PCL Invariants
    Mitchell, John C.
    Roy, Arnab
    Sundararajan, Mukund
    [J]. ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2009, 234 (0C) : 93 - 113
  • [9] On proving confluence modulo equivalence for Constraint Handling Rules
    Christiansen, Henning
    Kirkeby, Maja H.
    [J]. FORMAL ASPECTS OF COMPUTING, 2017, 29 (01) : 57 - 95
  • [10] Theorem proving modulo based on Boolean equational procedures
    Rocha, Camilo
    Meseguer, Jose
    [J]. RELATIONS AND KLEENE ALGEBRA IN COMPUTER SCIENCE, 2008, 4988 : 337 - 351