Deep learning techniques for suicide and depression detection from online social media: A scoping review

被引:27
|
作者
Malhotra, Anshu [1 ]
Jindal, Rajni [1 ]
机构
[1] Delhi Technol Univ, Dept Comp Sci & Engn, Delhi, India
关键词
Deep learning; Artificial neural networks; Artificial intelligence; Machine learning; Soft computing techniques; Real world mental health surveillance; Online social networks; Web mining & intelligence; User generated content; Natural language processing; Suicide; Self-harm; Depression; NETWORK; MODEL;
D O I
10.1016/j.asoc.2022.109713
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Psychological health, i.e., citizens' emotional and mental well-being, is one of the most neglected public health issues. Depression is the most common mental health issue and the leading cause of suicide and self-injurious behavior. Clinical diagnosis of these mental health issues is expensive and also ignored due to social stigma and lack of awareness. Nowadays, online social media has become the preferred mode of communication, which people use to express their thoughts, feelings, and emotions. Hence, user-generated content from online social media can be leveraged for non-clinical mental health assessment and surveillance. Conventional machine learning and NLP techniques have been used for the automated detection of mental health issues using social media data for a very long time now. However, the objective of our research is to study the applications of deep learning techniques for early detection and non-clinical, predictive diagnosis of depression, self-harm, and suicide ideation from online social network content only. To the best of our knowledge, we did not find any systematic literature review that studies the applications of deep learning techniques in this domain. In order to address this research gap, we conducted a systematic literature review (SLR) of 96 relevant research studies published until date that have applied deep learning techniques for detecting depression and suicide or self-harm behavior from social media content. Our work comprehensively covers state-ofthe-art w.r.t. techniques, features, datasets, and performance metrics, which can be of great value to researchers. We enumerate all the available datasets in this domain and discuss their characteristics. We also discuss the research gaps, challenges, and future research directions for advancing & catalyzing research in this domain. To the best of our knowledge, our study is the only and the most recent survey for this domain covering the latest research published until date. Based on our learnings from this review, we have also proposed a framework for mental health surveillance. We believe the findings of our work will be beneficial for researchers working in this domain. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Depression Detection in Social Media: A Comprehensive Review of Machine Learning and Deep Learning Techniques
    Bin Tahir, Waleed
    Khalid, Shah
    Almutairi, Sulaiman
    Abohashrh, Mohammed
    Memon, Sufyan Ali
    Khan, Jawad
    IEEE ACCESS, 2025, 13 : 12789 - 12818
  • [2] Deep Learning-Based Depression Detection from Social Media: Comparative Evaluation of ML and Transformer Techniques
    Bokolo, Biodoumoye George
    Liu, Qingzhong
    ELECTRONICS, 2023, 12 (21)
  • [3] Early Depression Detection from Social Network Using Deep Learning Techniques
    Shah, Faisal Muhammad
    Ahmed, Farzad
    Joy, Sajib Kumar Saha
    Ahmed, Sifat
    Sadek, Samir
    Shil, Rimon
    Kabir, Md Hasanul
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 823 - 826
  • [4] Detection of Suicide Ideation in Social Media Forums Using Deep Learning
    Tadesse, Michael Mesfin
    Lin, Hongfei
    Xu, Bo
    Yang, Liang
    ALGORITHMS, 2020, 13 (01)
  • [5] Unreliable Users Detection in Social Media: Deep Learning Techniques for Automatic Detection
    Sansonetti, Giuseppe
    Gasparetti, Fabio
    D'aniello, Giuseppe
    Micarelli, Alessandro
    IEEE ACCESS, 2020, 8 : 213154 - 213167
  • [6] Detection of Depression in Thai Social Media Messages using Deep Learning
    Kumnunt, Boriharn
    Sornil, Ohm
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON DEEP LEARNING THEORY AND APPLICATIONS (DELTA), 2020, : 111 - 118
  • [7] Depression Detection from Social Media Text Analysis using Natural Language Processing Techniques and Hybrid Deep Learning Model
    Tejaswini, Vankayala
    Babu, Korra Sathya
    Sahoo, Bibhudatta
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2024, 23 (01)
  • [8] An Exploration of Machine Learning and Deep Learning Techniques for Offensive Text Detection in Social Media-A Systematic Review
    Sharma, Geetanjali
    Brar, Gursimran Singh
    Singh, Pahuldeep
    Gupta, Nitish
    Kalra, Nidhi
    Parashar, Anshu
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 541 - 559
  • [9] Social media use and depression in adolescents: a scoping review
    Vidal, Carol
    Lhaksampa, Tenzin
    Miller, Leslie
    Platt, Rheanna
    INTERNATIONAL REVIEW OF PSYCHIATRY, 2020, 32 (03) : 235 - 253
  • [10] Social Media Use and Depression in Adolescents: A Scoping Review
    Azem, Layan
    Al Alwani, Rafaa
    Lucas, Augusto
    Alsaadi, Balqes
    Njihia, Gilbert
    Bibi, Bushra
    Alzubaidi, Mahmood
    Househ, Mowafa
    BEHAVIORAL SCIENCES, 2023, 13 (06)