An Minimax Theorem for Bi-Lower-Semicontinuous Set-Valued Mappings

被引:1
|
作者
Jin, Caiyun [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
关键词
Set-valued mapping; minimax theorem; bi-lower-semicontinuous; approximate minimal point; APPROXIMATE SOLUTIONS; INEQUALITIES; OPTIMIZATION; POINTS;
D O I
10.1080/01630563.2018.1559188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, an approximate minimax theorem for bi-lower-semicontinuous set-valued mapping was proved, relationships between semicontinuous set-valued mappings are discussed and the existence of approximate maxmin was given. The minimax theorem in this article is the first minimax theorem that doesn't require the set-valued mappings to be continuous.
引用
收藏
页码:825 / 843
页数:19
相关论文
共 50 条
  • [1] Systems of variational relations with lower semicontinuous set-valued mappings
    Balaj, Mircea
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2015, 31 (03) : 269 - 275
  • [2] A lower semicontinuous regularization for set-valued mappings and its applications
    Ait Mansour, M.
    Durea, M.
    Thera, M.
    [J]. JOURNAL OF CONVEX ANALYSIS, 2008, 15 (03) : 473 - 484
  • [3] Minimax Theorem for Two Set-Valued Mappings with Nonconvex Domains
    Zhang, Qing-bang
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (12) : 1444 - 1460
  • [4] Minimax Theorems for Set-Valued Mappings
    S. J. Li
    G. Y. Chen
    G. M. Lee
    [J]. Journal of Optimization Theory and Applications, 2000, 106 : 183 - 200
  • [5] Minimax theorems for set-valued mappings
    Li, S.J.
    Chen, G.Y.
    Lee, G.M.
    [J]. Journal of Optimization Theory and Applications, 2000, 100 (02) : 183 - 200
  • [6] Minimax inequalities for set-valued mappings
    Zhang, Y.
    Li, S. J.
    Li, M. H.
    [J]. POSITIVITY, 2012, 16 (04) : 751 - 770
  • [7] MINIMAX PROBLEMS FOR SET-VALUED MAPPINGS
    Zhang, Y.
    Li, S. J.
    Zhu, S. K.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (02) : 239 - 253
  • [8] Minimax theorems for set-valued mappings
    Li, SJ
    Chen, GY
    Lee, GM
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 106 (01) : 183 - 199
  • [9] Minimax inequalities for set-valued mappings
    Y. Zhang
    S. J. Li
    M. H. Li
    [J]. Positivity, 2012, 16 : 751 - 770
  • [10] ON POINTS OF CONTINUITY OF SEMICONTINUOUS SET-VALUED MAPPINGS
    KOLESNIKOV, ON
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1987, (01): : 16 - 20