Leveraging Reconstructive Profiles of Users and Items for Tag-Aware Recommendation

被引:4
|
作者
Li, Zhaoqiang [1 ]
Huang, Jiajin [1 ]
Zhong, Ning [2 ]
机构
[1] Beijing Univ Technol, Fac Informat Sci, Beijing, Peoples R China
[2] Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gunma, Japan
基金
中国国家自然科学基金;
关键词
OF-THE-ART; SYSTEMS;
D O I
10.1109/ICDMW.2018.00184
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is an effective recommendation method by revealing user preferences and extracting latent semantic information of items through social tag information. Recent research shows impressive recommendation performance by using neural network-based methods to transform tag-based user or item profiles to abstract feature representations. However, in the process of training a neural network, these methods need an more effective measurement to balance the tag-based profiles and the abstract representations to further improve item recommendation. This paper proposes a method based on Generative Adversarial Networks to tackle this issue. In this method, abstract features of users and items are extracted from their tag-based profiles by a disentangling network. These abstract features are then used to calculate the probability of a user preferring an item, and are also used to reconstruct new user and item profiles by a generative network. Furthermore, the discriminative network is introduced to identify generated profiles for enforcing smoothness in the representation of users and items. Experiments on two real-world data-sets demonstrate the state-of-the-art performance of the proposed method.
引用
收藏
页码:1294 / 1299
页数:6
相关论文
共 50 条
  • [1] Tag-aware dynamic music recommendation
    Zheng, Ervine
    Kondo, Gustavo Yukio
    Zilora, Stephen
    Yu, Qi
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 106 : 244 - 251
  • [2] TGCN: Tag Graph Convolutional Network for Tag-Aware Recommendation
    Chen, Bo
    Guo, Wei
    Tang, Ruiming
    Xin, Xin
    Ding, Yue
    He, Xiuqiang
    Wang, Dong
    [J]. CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 155 - 164
  • [3] AIRec: Attentive intersection model for tag-aware recommendation
    Chen, Bo
    Ding, Yue
    Xin, Xin
    Li, Yunzhe
    Wang, Yule
    Wang, Dong
    [J]. Neurocomputing, 2021, 421 : 105 - 114
  • [4] AIRec: Attentive intersection model for tag-aware recommendation
    Chen, Bo
    Ding, Yue
    Xin, Xin
    Li, Yunzhe
    Wang, Yule
    Wang, Dong
    [J]. NEUROCOMPUTING, 2021, 421 : 105 - 114
  • [5] Tag-aware Attentional Graph Neural Networks for Personalized Tag Recommendation
    Huang, Ruoran
    Han, Chuanqi
    Cui, Li
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [6] TRAL: A Tag-Aware Recommendation Algorithm Based on Attention Learning
    Zuo, Yi
    Liu, Shengzong
    Zhou, Yun
    Liu, Huanhua
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [7] DTGCF: Diversified Tag-Aware Recommendation with Graph Collaborative Filtering
    Zuo, Yi
    Liu, Shengzong
    Zhou, Yun
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [8] Tag-Aware Personalized Recommendation Using a Hybrid Deep Model
    Xu, Zhenghua
    Lukasiewicz, Thomas
    Chen, Cheng
    Miao, Yishu
    Meng, Xiangwu
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3196 - 3202
  • [9] Explainable Tag-aware Recommendation Based on Disentangled Graph Neural Network
    Du, Xiao-Yu
    Chen, Zheng
    Xiang, Xin-Guang
    [J]. Ruan Jian Xue Bao/Journal of Software, 2023, 34 (12): : 5670 - 5685
  • [10] Tag-aware recommendation based on Bayesian personalized ranking and feature mapping
    Li, Hongmei
    Diao, Xingchun
    Cao, Jianjun
    Zhang, Lei
    Feng, Qin
    [J]. INTELLIGENT DATA ANALYSIS, 2019, 23 (03) : 641 - 659