Network-Growth Rule Dependence of Fractal Dimension of Percolation Cluster on Square Lattice

被引:1
|
作者
Tanaka, Shu [1 ]
Tamura, Ryo [2 ,3 ]
机构
[1] Univ Tokyo, Dept Chem, Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[3] Natl Inst Mat Sci, Int Ctr Young Scientists, Tsukuba, Ibaraki 3050047, Japan
关键词
percolation; roughness; fractal dimension; network-growth model; Achlioptas rule;
D O I
10.7566/JPSJ.82.053002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To investigate the network-growth rule dependence of certain geometric aspects of percolation clusters, we propose a generalized network-growth rule introducing a generalized parameter q and we study the time evolution of the network. The rule we propose includes a rule in which elements are randomly connected step by step and the rule recently proposed by Achlioptas et al. [Science 323 (2009) 1453]. We consider the q-dependence of the dynamics of the number of elements in the largest cluster. As q increases, the percolation step is delayed. Moreover, we also study the q-dependence of the roughness and the fractal dimension of the percolation cluster.
引用
收藏
页数:5
相关论文
共 17 条
  • [1] THE FRACTAL DIMENSION OF PERCOLATION CLUSTER HULLS
    VOSS, RF
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07): : L373 - L377
  • [2] THE FRACTAL DIMENSION OF PERCOLATION CLUSTER BOUNDARY
    SOKOLOV, IM
    [J]. DOKLADY AKADEMII NAUK SSSR, 1986, 288 (02): : 360 - 361
  • [3] INVASION PERCOLATION IN AN ETCHED NETWORK - MEASUREMENT OF A FRACTAL DIMENSION
    LENORMAND, R
    ZARCONE, C
    [J]. PHYSICAL REVIEW LETTERS, 1985, 54 (20) : 2226 - 2229
  • [4] On the Concentration Dependence of the Cluster Fractal Dimension in Colloidal Aggregation
    Agustín E. González
    Mohammed Lach-Hab
    Estela Blaisten-Barojas
    [J]. Journal of Sol-Gel Science and Technology, 1999, 15 : 119 - 127
  • [5] On the concentration dependence of the cluster fractal dimension in colloidal aggregation
    González, AE
    Lach-Hab, M
    Blaisten-Barojas, E
    [J]. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 1999, 15 (02) : 119 - 127
  • [6] SIZE DEPENDENCE OF PERCOLATION THRESHOLD OF SQUARE AND TRIANGULAR NETWORK
    ROUSSENQ, J
    CLERC, J
    GIRAUD, G
    GUYON, E
    OTTAVI, H
    [J]. JOURNAL DE PHYSIQUE LETTRES, 1976, 37 (05): : L99 - L101
  • [7] On an exactly solvable compact cluster growth model on a square lattice
    Kearney, MJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (21): : 4553 - 4563
  • [8] SIMULATIONS OF A STOCHASTIC-MODEL FOR CLUSTER GROWTH ON A SQUARE LATTICE
    RIKVOLD, PA
    [J]. PHYSICAL REVIEW A, 1982, 26 (01): : 647 - 650
  • [9] MONTE-CARLO SIMULATION OF CURRENT INDUCED BY RANDOM-WALK ON PERCOLATION CLUSTER WITH FRACTAL DIMENSION
    MURAYAMA, K
    TATENO, N
    [J]. SOLID STATE COMMUNICATIONS, 1989, 71 (09) : 779 - 782
  • [10] Numerical simulation of cell growth pattern and determination of fractal dimension of cell cluster
    Wang Jizhe
    Guan Qingjie
    [J]. MATERIAL DESIGN, PROCESSING AND APPLICATIONS, PARTS 1-4, 2013, 690-693 : 1229 - 1233